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Abstract—We study the problem of searching for a given
element in a set of objects using a membership oracle. The
membership oracle, given a subset of objects A, and a target
object t, determines whether A contains t or not. The goal is
to find the target object with the minimum number of questions
asked from the oracle. This problem is known to be strongly
related to lossless source compression. In fact, the optimum
strategy is provided by Hufmman coding with the average
number of questions very close to the entropy H(P ) of the object
set.

The membership oracle aims at modelling interactive methods
(i.e., incorporate human feedback) has many real life applica-
tions. Due to practical constraints imposed by such applications
not every subset A of objects can be queried. It is known that
in general finding the optimum strategy with such constrains is
NP-complete. Given this negative result we restrict attention to
the cases represented by graphical models: graph G whose nodes
are the database objects is given, and the queries are restricted
to be those subsets A that are connected in G.

We show that when G itself is connected, there is a search
algorithm that finds the target in 4H(P ) + 2 queries on the
average. Since entropy is the trivial lower bound, our algorithm
performs within a constant gap from the optimum strategy.

I. INTRODUCTION

Searching is one of the fundamental problems in computer
science which arises in many different areas. In this work we
consider the problem of searching where objects have different
likelihood of being the target and are only accessible through
a membership oracle. This is an oracle that can answer the
following type of questions:

”Given a set A and an object t, does set A contain
t or not?”

Given access to the membership oracle, we wish to identify
a particular element (target) in the given set of objects. This
element, for instance, can be a defective node in a network.
In each phase, a set of objects is submitted to the oracle.
Based on the outcome of the previous queries, the next query
will be posed. The search terminates once the target object is
located in the set. The membership oracle models, to some
extent, the human abilities in content search applications with
human assistance in the loop. Such applications include visual
recognition [1] and pattern classification [2] where questions
based on simple visual attributes are posed interactively and
the goal is to identify the true class. Using this analogy, it is
natural to try minimizing the access to the oracle, since asking
human users is costly.

The above commonly cited examples can be seen as the
visual version of the ”twenty question problem” where one
player chooses an instance from a category (e.g. a picture of a
famous person from Flicker) and the other player who knows
the category tries to guess the particular choice by posing
questions as the ones specified by the membership oracle.

Without any constraints on the queries, one can see that
this problem is equivalent to the lossless source compression
in which Huffman coding is the optimum startegy in terms of
the mean number of questions/queries asked.

However, this formulation is much too restrictive for prac-
tical content search/classification schemes. Due to limited
ability of humans (e.g., imperfect memory, inexperienced
users, etc) there are usually many restrictions on the subset of
objects that could be asked. In practice, it might be impractical
or impossible to demand a person to be capable of answering
the above type of questions for every subset.

In the constrained twenty questions problem [3], [4] the
set of possible questions is limited. The problem is then
specified by two parameters: the prior distribution of objects
and the set of constraints. For small databases, on can find
the optimum strategy with dynamic programming while it has
been shown that the general problem is NP-complete [5]. Like
many hard combinatorial problems, considerable effort has
been applied to finding suboptimal but still good algorithms.
This is precisely what we intend to do in this work.

We address the above constraints within a general frame-
work that we refer to as graphical model, i.e., each query
set must conform to the constraints imposed by a graph. For
instance, items can be associated with the vertices of the con-
straint graph and an edge between two vertices indicates that
the associated pair of objects can simultaneously participate
in a query. In other words, an admissible query is a subset of
nodes that are path connected. We should stress that in this
context, as a special case the optimum algorithm for finding
an object on a complete graph (i.e., no graphical constraints)
reduces to that of Huffman coding. Given a graphical model
for the constraints we then show how one can devise a
suboptimal but provably efficient algorithms with a constant
gap from the performance of the optimum strategy.

The rest of this paper is organized as follows. In Section II
we provide an overview of the related work in this area. In
Section III, we introduce our notation and mention some basic
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facts related to graphs. Then Section IV formally describes the
problem that is the focus of this work, namely, compression
with graphical constraints. In Section V we present our theo-
retical results. Finally, we conclude in Section VI.

II. RELATED WORK

The problem studied here can be seen as a special case of
the binary identification problem [3]. It is known that both
the average case minimization and worse case minimization
are NP-complete [5]. For both cases, there exist heuristic
algorithms that admit O(log n)-approximation [6]. There are
many variants to the binary identification problem, such as
searching in a totally ordered sets [7] or partially ordered
sets [8], [9].

The use of interactive methods (i.e., that incorporate human
feedback) for searching in a dataset has a long history in
literature. Relevance feedback [10] is a method for interactive
image retrieval, in which users mark the relevance of image
search results, which then used to create a refined search
query. Similarly, in active learning [11] the main idea is to
sequentially acquire labelled data by presenting an oracle
(the user) with unlabelled images and ask her to label them.
Our objective in this work is somewhat similar. We use the
membership oracle to identify a target in a database. This
oracle has been extensively used in practice [2], [1]. In general,
having access to a membership oracle is a strong assumption,
since humans may not necessarily be able to answer queries
of the above type for any object set. To make this oracle
practically appealing, we introduced the graphical constraints
on the set of queries, the same way deployed in [12].

Our problem is strongly related to the interactive methods
used for nearest neighbour search (NNS) [13], [14] where
the goal is to identify the nearest object to a query in a
database. Recently, a new interactive method for the NNS
was introduced by Lifshits et al [15] and further explored in
[16], [17], [18] in which they assumed to have access to a
comparison oracle. This oracle, given two reference objects
and a query object, returns the reference object closest to the
query object. Comparison oracle attempts to model another
ability of humans, namely, humans are capable of comparing
objects and single out which are the most similar ones, though
they can probably not assign a meaningful numerical value to
similarity. This problem was then generalized for the non-
uniform probability distribution over the set of objects by
authors in [19].

III. DEFINITIONS AND NOTATION

In this section we introduce some tools, definition and
notations which are used throughout the paper.

Definition 1: Consider a set of objects N where |N | = n.
In order to represent the constraint graph G(V,E) we assume
that there is a one-to-one map between the objects and the
set of vertices V = {1, 2, . . . , n}. The set of edges represent
the constraints on the proposed object sets as follows: we say
that a subset A ⊂ V is proper if the elements of A are path
connected on graph G. The proper sets are basically the ones
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Fig. 1. The set A = {2, 3, 5, 6} is proper while B = {1, 5, 7} is not. For
instance OG(A, 7) = NO and OG(A, 2) = YES.

that can be submitted to the membership oracle (the oracle
is formally described below.) Throughout this paper we focus
merely on connected constraint graphs.

Definition 2: The membership oracle O(A, t) is the one
that given the set A ⊂ V and target object t provides one
bit of information as follows:

O(A, t) =

{
YES if t ∈ A,
NO otherwise.

In the same way we can define the constrained membership
oracle over the proper subsets A. More formally,

OG(A, t) =


YES if A is proper & t ∈ A,
NO if A is proper & t /∈ A,
ERROR if A is not proper.

Unless stated otherwise, throughout this paper whenever we
refer to an oracle we mean the constrained membership oracle.

Definition 3: The distance dG(u, v) in G of two vertices
u, v is the length of a shortest u− v path in G. The greatest
distance between any two vertices in G is the diameter of G
and denoted by DG.

Definition 4: A vertex is central in G if its greatest distance
from any other vertex is as small as possible. This distance is
the radius of G denoted by RG. Formally,

RG = min
v∈V

max
u∈V

dG(u, v). (1)

It is easy to show that RG ≤ DG ≤ 2RG.
An example of the constraint graph G is shown in Figure 1.

Definition 5: For t ∈ V , we will call t the target. We will
consider a probability distribution P = {p1, p2, . . . , pn} over
the set of objects which we call the demand. In general the
demand can be heterogeneous as pt can be different across
different objects.

Definition 6: Let e = uv be an edge of a graph G(V,E).
By G/e we denote the graph obtained from G by contracting
the edge e into a new vertex ve, which becomes adjacent to
all the former neighbours of v and u. The same way, for a
proper set A ⊂ V we denote by G/A, the graph obtained by
contracting all the vertices of A into one single vertex vA.
Note that if the graph G is connected, after contraction it still
remains connected.
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Definition 7: For a proper set A ⊂ G we denote by G −
A the operation that removes all the vertices of A and their
incident edges from G. Note that the removal operation may
lead to a disconnected graph.

IV. PROBLEM STATEMENT

Let G = (V,E) denote the constraint graph which deter-
mines the proper sets. Given access to the constraint graph G
and its corresponding membership oracle OG, we would like
to navigate through V , the set of objects, until we find the
target. More formally, let Ak be the k-th proper set submitted
to the constrained oracle OG, and let

oK = OG(Ak, t) ∈ {YES,NO}

be the oracle’s response. We define

Hk = {(Ak, ok)}k, k = 1, 2, . . .

to be the history of the process up to the k-th access to the
oracle. By definition we assume that H0 = φ, i.e., there is no
history when we start the search. In general the selection of
the (k+1)-th proposed set Ak+1, is determined by the history
Hk. More precisely, there exists a mapping Hk → f(Ak) such
that

Ak+1 = f(Hk), k = 1, 2, . . . .

We call f(·) the search policy. Our goal is to design f such
that we minimize the number of access to the oracle. More
formally, given a target t and a search policy f , we define the
search cost

Cf (t) = min{k : Ak = t}

to be the number of proposals to the oracle until t is found.
We restrict our attention to the case where the search policy is
deterministic. The content search through membership oracle
is then defined as follows:

CONTENT SEARCH THROUGH MEMBERSHIP OR-
ACLE (CSTMO): Given a demand distribution P
and constraint graph G, select f that minimizes the
expected search cost

C̄f =
∑
t∈V

ptCf (t).

V. MAIN RESULTS

In this section we present our main results . We first show
that Algorithm 1 through contraction and removal procedures
can find the target in H(P )+logRG+2 queries in expectation.
Similarly, for Algorithm 2 we show that it identifies the target
in log n queries irrespective of the distribution or the constraint
graph. Surprisingly, the combination of these two strategies
will provide us with a search algorithm that performs within
a constant gap from the optimum point.

RG

2

RG

v

Fig. 2. The BFS spanning tree from v that shows the vertices sorted based
on their distances from v. Vertex v is central, and the furthest point from it
is in distance RG.

Algorithm 1 The role of radius
Input: Constraint graph G, root vertex v, radius
RG.

if The constraint graph G is complete then
Run the classical Huffman Coding to find the target.

else
Let S be the set of all objects in G with distance at most
dRG/2e from v, and S̄ be the remaining.
Submit the query OG(S, t).
if OG(S, t) = YES then

Recurse with new arguments: G− S̄, v, and dRG/2e.
else

Recurse with new arguments: G/S, vS , and bRG/2c.
end if

end if

A. Divide and Conquer: The Role of Radius

Algorithm 1 divides the database into two groups and
through the membership oracle determines in which group
the target is located. It then reduces the search domain using
contraction/removal procedure.

Theorem 5.1: Given a connected constraint graph G of
radius RG, Algorithm 1 finds the target in H(P )+dlogRGe+2
queries, on average.

Proof: Unless the graph is complete Algorithm 1 divides
objects into two sets: 1) Set S: the objects within distance
at most dRG/2e from the central vertex v, and 2) Set S̄: the
remaining ,i.e., S̄ = V −S . The partitioning method is shown
in Figure 2.

The set S is proper. Hence, using the membership oracle
we can find out whether the target t is in S or not. More
formally, we submit OG(S, t). Based on the oracle’s response
we do the following. If the target is in set S or equivalently
OG(S, t) = YES, we remove set S̄ from G, i.e., G = G− S̄.
Otherwise, we contract set S since we know that the target is
not in S. We need to do the contraction in order to keep the
induced constraint graph connected. The above procedure is
repeated (from the same central node v that we started) until
the graph becomes complete, meaning, any subset of vertices
can be queried. The following lemma bounds the number of
access to the oracle until the first phase terminates.

Lemma 5.2: After at most 1 + dlogRGe queries, the con-
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straint graph becomes complete.
Proof: Note that after each iteration RG reduces to

either dRG/2e or bRG/2c. Therefore, with at most dlogRGe
iterations, the RG becomes 1. At this step, the graph is a star
centered at v. We submit the query OG({v}, t). If the target
is v, the task is done, and we terminate. Otherwise, we can
submit any subset S of leaves of this star as a proper query
set by simply adding v to S. Therefore, in this case instead of
submitting query S, we can submit S ∪{v}, and get the same
answer.

Once the above procedure terminates we are left with a
complete graph on which we can run Huffman coding for
finding the target. Note that the queries we ask until the
constraint graph becomes complete partitions the objects into
different groups such that the constraint graph of each group
is complete after contracting the set of vertices outside this
group.

Let S1, S2, · · · , Sk denote the groups that we have at
the end of the first phase. Clearly, ∪ki=1Si is equal to
{1, 2, · · · , n}, the set of vertices. We also know that these
groups are disjoint, i.e., Si∩Sj = ∅ for every choice of i 6= j.
Let Pi be the sum of probabilities of objects in group Si.
Therefore, with probability Pi, the target is in Si on which
we can then run Huffman coding to find the target. To do so,
we require to access the membership oracle at most one plus
the entropy of set Si.

1 +
∑
u∈Si

pu
Pi

log

(
1
pu

Pi

)
≤ 1 +

1

Pi

∑
u∈Si

pu log

(
1

pu

)
.

(One should not forget to scale the probability of set Si by Pi,
otherwise the sum of probabilities is not one.) The target is in
Si with probability Pi. Hence, the average number of queries
in the second phase is given by

k∑
i=1

Pi

[
1 +

1

Pi

∑
u∈Si

pu log(
1

pu
)
]

= 1 +H(P ). (2)

The target is found once both phases one and two terminate.
Using Lemma 5.2 and (2) we can conclude that the average
number of queries to the oracle is at most H(P )+dlogRGe+2.

B. Divide and Conquer: The Role of size

In what follows we present a simple algorithm that finds
the target in log n queries.

Theorem 5.3: Given a connected constraint graph G with
|V | = n, Algorithm 2 finds the target in dlog ne queries, on
average.

Proof: First, note that the constraint graph always re-
mains connected. In particular, if the target is in set T ′, i.e.,
OG(T ′, t) = YES, we set G = T ′. Otherwise, we contract
set T ′ into vT ′ , i.e., G = G/T ′. In the latter case, since the
neighbors of vT ′ are all connected through vT ′ , whenever we
want to submit a query of a subset of neighbors (which may
not be path connected), we only need to add vT ′ to the query
to make the subset proper. Due to the fact that the target is

Algorithm 2 The role of size
Input: Constraint graph G,

Find a spanning tree T of the constraint graph.
while There are more than dn/2e vertices in T do

Remove one of the leaves in T arbitrarily.
end while
Let T ′ be the remaining subtree after leaf removals.
Submit the query OG(T ′, t)
if OG(T ′, t) = YES then

Keep all the objects in T ′, and remove all the rest.
Recurse on the remaining objects.

else
Contract all objects in T ′, and consider graph G/T ′.
Remove object vT ′ from G/T ′, and connect all neigh-
bours of vT ′ , and recurse on the remaining graph.

end if

not in set T ′, this addition does not affect the response of the
query. For simplicity, we can connect all neighbors of vT ′ ,
keeping in mind that they are connected through vT ′ .

Each query to the membership oracle halves the number of
vertices/objects in the constraint graph. Therefore, we submit
at most dlog ne queries.
The main drawback of algorithm 1 and 2 is that they can
potentially deviate from the entropy H(P ) by a factor of log n.

C. Constant Approximation Algorithm

In this section we present a search algorithm that finds the
target within a constant gap from the optimum algorithm. To
do so, we use algorithm 1 and 2 as the subroutines in our
search strategy.

Theorem 5.4: Given a connected constraint graph G, there
exists a search strategy that finds the target in 2 + 4H(P )
queries, on average.

Proof: Without loss of generality, let us assume that p1 ≥
p2 ≥ · · · ≥ pn. For any non-negative integer i, define the
threshold ai to be the number such that∑

j:pj<
1

2ai

pj ≤
1

2i
≤

∑
j:pj≤ 1

2ai

pj .

For convenience, we define a0 to be zero.
Lemma 5.5: H(P ) ≥

∑∞
k=1 ak/2

k+1.
Proof: For any i ≥ 1, let Ti be the set of probabilities in

the range (1/2ai+1 , 1/2ai ], i.e.,

Ti = {pj |1/2ai+1 < pj ≤ 1/2ai}.

We define Qi to be the sum of probabilities in Ti, namely,
Qi =

∑
pj∈Ti

pj . Clearly, for any pj ∈ Ti we have ai ≤
log (1/pj). As a result

H(P ) ≥
∞∑
j=1

Qjaj .
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Note that
∑∞

j=1Qjaj can be written as

∞∑
j=1

Qj

j∑
k=1

(ak − ak−1) =

∞∑
k=1

(ak − ak−1)

∞∑
j=k

Qj .

By the way we defined Qj , we can conclude that

H(P ) ≥
∞∑
k=1

(ak − ak−1)
∑

j:pj≤ 1
2ak

pj

≥
∞∑
k=1

(ak − ak−1)/2k.

Note that the term on the r.h.s of the above expression equals∑∞
k=1 ak/2

k+1.

In Our algorithm we use thresholds ai to partition the ob-
jects into different groups, and search inside them separately.
Let Ai be the set of probabilities pj in the range [1/2ai , 1], i.e.
Ai = {pj |pj ≥ 1/2ai}. Since each probability pj represents
an object, we abuse the notation and let Ai also denote the
set of corresponding objects.

Lemma 5.6: Given that the set Ai contains the target,
Algorithm 2 finds it in ai queries.

Proof: For simplicity, let us assume that t ∈ A1 (the
argument is the same for other Ai). In this case, we can
delete all other vertices, and keep only set A1. By doing so
we might let the graph become disconnected. To avoid that, if
there was is a path between two vertices u and v both in A1

such that some of the vertices of this path are outside A1, we
simply add an auxiliary edge between u and v. This way the
graph stays connected. However, we should be careful about
the meaning of the added edge. When we want to make a
query that contains both u and v, the axillary edge indicates
which vertices outside set A1 should also be included to the
query. Since we know that the target is in set A1, adding
these vertices will not change the response of the oracle. We
know that the probability of each vertex/object in A1 is at least
1/2a1 , so there are at most 2a1 vertices in A1. Therefore, with
at most a1 queries algorithm 2 finds the target.

The search algorithm starts from A1, and uses Algorithm 2
to find some vertex v ∈ A1 as the target location. The search
algorithm submits an additional query OG({v}, t). If the target
is v, we identify it. Otherwise, we can conclude that the target
is not in A1. The search then moves to the set A2. In general,
once we find out that the target is not in set Ai we check the
subsequent set Ai+1. Using the same argument, with ai + 1
queries we can conclude whether Ai contains the target or not
and in case it does we identify it. Note that the probability that
the target is not in Ai decreases exponentially as i increases.
More formally, for any i ≥ 1, the probability that we do not
find the target in Ai is ∑

pj<
1

2ai

pj ≤
1

2i
.

Hence, the expected number of queries in our algorithm is at
most ∞∑

k=1

(ak + 1)/2k−1
(a)

≤ 2 + 4H(P ),

where in (a) we used Lemma 5.5.

VI. CONCLUSION

We studied the problem of content search through a database
of objects using a constrained membership oracle. We showed
that for those cases that the constraints can be represented by
a graphical model, there exists an efficient search algorithm
that finds the target object in less than 2 + 4H(P ) queries on
the average.
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