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Abstract—In interactive content search through comparisons,
a user searching for a target object in a database is asked to select
the object most similar to her target from a small list of objects. A
new object list is then presented to the user based on her earlier
selections. This process is repeated until the target is included in
the list presented, at which point the search terminates.

We study this problem under the scenario of heterogeneous
demand, where target objects are selected from a non-uniform
probability distribution. We also assume that objects are em-
bedded in a doubling metric space which is fully observable to
the search algorithm. Based on these assumptions, we devise
an efficient comparison-based search algorithm whose cost in
terms of the number of queries can be bounded by the doubling
constant of the embedding c, and the entropy of demand
distribution, H . More precisely, we show that the average search
costs scales C̄F = O(c5H), which improves upon the previously
best known bound and is order optimal for constant c.

I. INTRODUCTION

In interactive content search through comparisons, a user
navigates within a database to find a target object in the
following fashion. The search iterates over multiple phases
and, in each phase, a small list of objects is presented to the
user. The user selects among the list the object closest to the
target; a new object list is then presented to the user based on
her earlier selections. This process continues until the target
is included in the list presented, at which point she retrieves
this item and the search terminates.

This kind of interactive navigation, also known as ex-
ploratory search, has numerous real-life applications [1], [2],
[3]. One example is navigating through a database of pictures
of people photographed in an uncontrolled environment [4],
such as Fickr or Picasa. Automated methods may fail to
extract meaningful features from such photos. Moreover, in
many practical cases, images that present similar low-level
descriptors (such as SIFT features [5]) may have very different
semantic content and high level descriptions, and thus be
perceived differently by users [6], [7].

On the other hand, a human searching for a particular person
can easily select from a list of pictures the subject most similar
to the person she has in mind. Formally, the behavior of a
human user can be modelled by a so-called comparison oracle,
introduced by Goyal et al. [8]. In particular, assume that that
the database of pictures is represented by a set N endowed
with a distance metric d. This metric captures the “distance”
or “dissimilarity” between pictures of different people. The

oracle/human has a specific target t ∈ N in mind, and can
answer questions of the following kind:

“Between two objects x and y in N , which one is
closest to t under the metric d?”

The goal of interactive content search through comparisons is
thus to find a sequence of proposed pairs of objects to the
oracle/human that leads the target object with as few queries
as possible.

In this paper, we consider the problem under the scenario
of heterogeneous demand, where the target object t ∈ N
is sampled from a probability distribution µ. In this setting,
interactive content search through comparisons has a strong
relationship to the classic “twenty-questions game” problem.
In particular, a membership oracle [9] is an oracle that can
answer queries of the following form:

“Given a subset A ⊆ N , does t belong to A?”
It is well known that to find a target t one needs to submit
at least H(µ) queries, on average, to a membership oracle,
where H(µ) is the entropy of µ. Moreover, there exists an
algorithm (Huffman coding) that finds the target with only
H(µ)+1 queries on average [9].

Content search through comparisons departs from the above
setup in assuming that the database N is endowed with the
metric d. A membership oracle is stronger than a comparison
oracle as, if the distance metric d is known, comparison queries
can be simulated through membership queries. On the other
hand, a membership oracle is harder to implement in practice:
unless A can be expressed in a concise fashion, a user will
answer a membership query in linear time in |A|. This is in
contrast to a comparison oracle, for which answers can be
given in constant time. In short, our study of search through
comparisons seeks similar performance bounds to the classic
setup (a) for an oracle that is easier to implement and (b)
under an additional assumption on the structure of the database
(namely, that it is endowed with a distance metric).

Intuitively, the performance of searching for an object
through comparisons will depend not only on the entropy
of the target distribution, but also on the topology of the
target set N , as described by the metric d. In particular, in
earlier work [10], we established that Ω(cH(µ)) queries are
necessary, in expectation, to locate a target using a comparison
oracle, where c is the so-called doubling-constant of the



metric d. Moreover, we provided an algorithm that locates
the target in O(c3H log(1/µ∗)) queries, in expectation, where
µ∗ = minx∈N µ(x). In this paper, we improve on the previous
bound by proposing an algorithm that locates the target with
O(c5H(µ)) queries, in expectation.

The remainder of this paper is organized as follows. In
Section II we provide an overview of the related work in this
area. In Sections III and IV we introduce our notation and
formally state the problem that is the focus of this work. We
present our previous contributions in Section V and our main
result in Section VI. We finally conclude in Section VII.

II. RELATED WORK

Content search through comparisons is a special case of
nearest neighbour search (NNS), a problem that has been
extensively studied [11], [12]. Our work can be seen as an
extension of earlier work [13], [14], [11] considering the
NNS problem for objects embedded in a metric space. It
is also assumed that the embedding has a small intrinsic
dimension, an assumption that is supported by many practical
studies [15], [16]. In particular, [14] introduces navigating
nets, a deterministic data structure for supporting NNS in
doubling metric spaces. A similar technique was considered
by [11] for objects embedded in a space satisfying a certain
sphere-packing property, while [13] relied on growth restricted
metrics; all of the above assumptions have connections to the
doubling constant we consider in this paper. In all of the above
works the demand over the target objects is assumed to be
homogeneous.

NNS with access to a comparison oracle was first introduced
by [8], and further explored by [17] and [4]. A considerable
advantage of the above works is that the assumption that
objects are a-priori embedded in a metric space is removed;
rather than requiring that similarity between objects is captured
by a distance metric, the above works only assume that any
two objects can be ranked in terms of their similarity to any
target by the comparison oracle. Nevertheless, these works also
assume homogeneous demand, so our work can be seen as
an extension of searching with comparisons to heterogeneity.
In this respect, the closet works to ours are [10], [18], where
authors also assume heterogeneous demand distribution. Under
the assumptions that a metric space exists and the search
algorithm is aware of it, we provide better results in terms
of the average search cost. The main problem with [10] is
that their approach is memoryless, i.e., it does not make use
of previous comparisons, whereas in our work we solve this
problem by deploying an ε-net data structure.

The first practical scheme for image retrieval, based on
the pairwise comparisons between images, was proposed by
[19]. It was then extended by [20] and [21] to the context
of content search. The use of comparison oracle is not limited
only to content retrieval/search. As explained in [22], [23], the
individuals’ rating scale tends to fluctuate a lot. In addition,
ratings scales may vary between people. For these reasons it is
more natural to use the pairwise comparisons as the basis for
the recommendation systems. The advantages of this approach

and the challenges of how to make such a system operational
is well described in [24].

III. DEFINITIONS AND NOTATION

Consider a set of objects N , where |N | = n. We assume
that there exists a metric space (M,d), where d(x, y) denotes
the distance between x, y ∈ M, such that objects in N are
embedded in (M,d): i.e., there exists a one-to-one mapping
from N to a subset of M.

The objects in N may represent, for example, pictures in a
database. The metric embedding can be thought of as a map-
ping of the database entries to a set of features (e.g., the age
of person depicted, her hair and eye color, etc.). The distance
between two objects would then capture how “similar” two
objects are w.r.t. these features. In what follows, we will abuse
notation and write N ⊆M, keeping in mind that there might
be difference between the physical objects (the pictures) and
their embedding (the attributes that characterize them).

A. Comparison Oracle

A comparison oracle [8] is an oracle that, given two ob-
jects x, y and a target t, returns the closest object to t. More
formally,

Oracle(x, y, t) =

 x if d(x, t) < d(y, t),
y if d(x, t) > d(y, t)
x or y if d(x, t) = d(y, t).

(1)

Observe that if x = Oracle(x, y, t) then d(x, t) ≤ d(y, t); this
does not necessarily imply however that d(x, t) < d(y, t).

It is important to note here that although we write
Oracle(x, y, t) to stress that a query always takes place with
respect to some target t, in practice the target is hidden and
only known by the oracle. Alternatively, following the “oracle
as human” analogy, the human user has a target in mind and
uses it to compare the two objects, but never discloses it until
actually being presented with it.

B. Demand, Entropy and Doubling Constant

We will consider a probability distribution µ over the set of
objects in N which we will call the demand. In other words,
µ will be a non-negative function such that

∑
t∈N µ(t) = 1.

In general, the demand can be heterogeneous as µ(t) may
vary across different targets. As we will see in Section V, the
target distribution µ will play an important role in our analysis.
In particular, two quantities that affect the performance of
searching in our scheme will be the entropy and the doubling
constant of the target distribution. We introduce these two
notions formally below.

The entropy of µ is defined as

H(µ) =
∑

x∈supp(µ)

µ(x) log
1

µ(x)
, (2)

where supp(µ) is the support of µ. We define the max-entropy
of µ as

Hmax(µ) = max
x∈supp(µ)

log
1

µ(x)
. (3)



TABLE I
SUMMARY OF NOTATION

N Set of objects
(M, d) Metric space
d(x, y) Distance between x, y ∈ M
µ The demand distribution

H(µ) The entropy of µ
Hmax(µ) The max-entropy of µ
Bx(r) The ball of radius r centered at x
c(µ) The doubling constant of µ

Given an object x ∈ N , we denote by

Bx(R) = {y ∈M : d(x, y) ≤ R} (4)

the closed ball of radius R ≥ 0 around x. Given a set A ⊂ N
let

µ(A) =
∑
x∈A

µ(x).

We define the doubling constant c(µ) of a distribution µ to be
the minimum c > 0 for which

µ(Bx(2R)) ≤ c · µ(Bx(R)), (5)

for any x ∈ supp(µ) and any R ≥ 0. Moreover, will say that
µ is c-doubling if c(µ) = c.

Note that, contrary to the entropy H(µ), the doubling con-
stant c(µ) depends on the topology of supp(µ), determined by
the embedding of N in the metric space (M, d).

IV. PROBLEM STATEMENT

In formulating our problem, we follow the notation in [10].
Given access to a comparison oracle, we would like to navigate
through N until we find a target object. In particular, we
define greedy content search as follows. Let t be the target
object and s some object that serves as a starting point. The
greedy content search algorithm proposes an object w and
asks the oracle to select, between s and w, the object closest
to the target t, i.e., it evokes Oracle(s, w, t). This process is
repeated until the oracle returns something other than s, i.e.,
the proposed object is “more similar” to the target t. Once this
happens, say at the proposal of some w′, if w′ 6= t, the greedy
content search repeats the same process now from w′. If at
any point the proposed object is t, the process terminates.

More formally, let xk, yk be the k-th pair of objects submit-
ted to the oracle: xk is the current object, which greedy content
search is trying to improve upon, and yk is the proposed object,
submitted to the oracle for comparison with xk. Let

ok = Oracle(xk, yk, t) ∈ {xk, yk}

be the oracle’s response, and define

Hk = {(xi, yi, oi)}ki=1, k = 1, 2, . . .

be the sequence of the first k inputs given to the oracle, as well
as the responses obtained; Hk is the “history” of the content
search up to and including the k-th access to the oracle.

The starting object is always one of the first two objects
submitted to the oracle, i.e., x1 = s. Moreover, in greedy
content search,

xk+1 = ok, k = 1, 2, . . .

i.e., the current object is always the closest to the target among
the ones submitted so far.

On the other hand, the selection of the proposed object yk+1

will be determined by the history Hk and the object xk. In
particular, given Hk and the current object xk there exists a
mapping (Hk, xk) 7→ F(Hk, xk) ∈ N such that

yk+1 = F(Hk, xk), k = 0, 1, . . . ,

where here we take x0 = s ∈ N (the starting object) and
H0 = ∅ (i.e., before any comparison takes place, there is no
history).

We will call the mapping F the selection policy of the
greedy content search. In general, we will allow the selection
policy to be randomized; in this case, the object returned by
F(Hk, xk) will be a random variable, whose distribution

Pr(F(Hk, xk) = w), w ∈ N , (6)

is fully determined by (Hk, xk). Observe that F depends on
the target t only indirectly, through Hk and xk; this is consis-
tent with our assumption that t is only “revealed” when it is
eventually located.

We will say that a selection policy is memoryless if it de-
pends on xk but not on the history Hk. In other words, the
distribution (6) is the same when xk = x ∈ N , irrespectively
of the comparisons performed prior to reaching xk.

Assuming that when xk = t, the search effectively termi-
nates (i.e., the human reveals that this is indeed the target),
our goal is to select F so that we minimize the number of
accesses to the oracle. In particular, given a a target t and a
selection policy F , we define the search cost

CF (t) = inf{k : xk = t}

to be the number of proposals to the oracle until t is found.
This is a random variable, as F is randomized; let E[CF (t)]
be its expectation. The Content Search Through Comparisons
problem is then defined as follows:

CONTENT SEARCH THROUGH COMPARISONS (CSTC):
Given an embedding of N into (M, d) and a de-
mand distribution µ(t), select F that minimizes the
expected search cost

C̄F =
∑
t∈N

µ(t)E[CF (t)].

Note that, as F is randomized, the free variable in the above
optimization problem is the distribution (6).



Algorithm 1 Memoryless Content Search
Input: oracle(·,·,t) , demand distribution µ, starting object s.
Output: target t.

1: x← s
2: while x 6= t do
3: Sample y ∈ N from the probability distribution

Prx(y) ∝ µ(y)
µ(Bx(d(x,y)))

. (8)

4: x← Oracle(x, y, t).
5: end while

V. A LOWER BOUND AND A MEMORYLESS ALGORITHM

We first present our previous results established in [18],
[10]. Our first result, whose proof is in [10], establishes a
lower bound on the expected number of queries that one needs
to submit to a comparison oracle to locate a target t.

Theorem 1. For any integer K and D, there exists a metric
space (M, d) and a target measure µ with entropy H(µ) =
K log(D) and doubling constant c(µ) = D such that the
average search cost of any selection policy F satisfies

C̄F ≥ H(µ)
c(µ)− 1

2 log(c(µ))
· (7)

Interestingly, a simple memoryless selection policy, shown
in Algorithm 1, satisfies an upper bound that is within an
O(c2(µ)Hmax(µ)) factor of this bound.

Theorem 2. The expected search cost of Algorithm 1 is bounded
by C̄F ≤ 6c3(µ) ·H(µ) ·Hmax(µ).

The proof of this theorem can also be found in [10]. There
are several interesting observations to be made about Algo-
rithm 1. To begin with, the memoryless selection policy (8)
has the following appealing properties. For two objects y, z
that have the same distance from x, if µ(y) > µ(z) then y
has a higher probability of being proposed. When two objects
y, z are equally likely to be targets, if d(y, x) < d(z, x) then
y has a higher chance of being proposed. The distribution (8)
thus biases both towards objects close to x as well as towards
objects that are likely to be targets.

Moreover, in implementing the policy outlined in Algo-
rithm 1, it is assumed that, at each x, a random y can be
sampled from distribution (8). This assumes that the distribu-
tion µ and the embeddingM (or the distance metric d) are a-
priori known. However, it is in fact true that Algoritm 1 can be
implemented even if only the ordering relationships between
objects, rather than their actual distances between targets, are
known [10]. This is important, as the latter can be obtained
by only accessing a comparison oracle. In particular, all such
ordering relationships can be revealed by asking |N | log |N |
oracle queries offline (e.g., during a training phase).

As noted, the main discrepancy factor between the upper
bound in Theorem 2 and the lower bound in Theorem 1 is of
the order of c3Hmax. Our next result, appearing in the next

Section eliminates the Hmax term at the expense of a depen-
dence on the doubling dimension through an O(c5) term.

VI. AN ALGORITHM BASED ON ε-NETS

Our objective in this section is to establish that comparison-
based search can complete in identifying an object target t ∈
N initially sampled according to probability distribution µ in
a number of steps CF whose average value C̄F verifies

C̄F ≤ H(µ)ck(µ)

for some fixed exponent k to be identified. To this end, we
establish a number of intermediate results.

A. ε-Nets

We define ε-Nets as follows:

Definition 1. An ε-net of a subset A ⊂ N is a maximal
collection of points {x1, . . . , xk} of A such that for i 6= j,
d(xi, xj) > ε.

In order to construct an ε-net, one needs to have access
to the underlying metric space and the distance d between
any two points. The construction of the net can happen in a
greedy fashion in O(K|A|) time, where K the size of the ε-
net. There are in fact efficient algorithms that can construct
such nets; since this is not the focus of this paper, we refer
the interested readers to [11].

Lemma 1. Given a ball Bx(R) ⊂ N , and an integer ` > 0,
any (R/2`)-net {x1, . . . , xk} of Bx(R) is such that:

Bx(R) ⊂ ∪ki=1Bxi
(R/2`), (9)

and for all i 6= j

Bxi(R/2
`+1) ∩Bxj (R/2`+1) = ∅. (10)

Moreover, the cardinality k of any such (R/2`)-net is at most
c`+3.

Proof: If (9) does not hold, then there exists y in Bx(R)
such that d(y, xi) > R/2` for all i = 1, . . . , k. This contradicts
the maximality of {x1, . . . , xk}.

For all i 6= j, any point z in the intersection Bxi(R/2
`+1)∩

Bxj (R/2`+1) is such that

d(xi, xj) ≤ d(xi, z) + d(xj , z) ≤ 2R/2`+1 = R/2`.

This contradicts the property that d(xi, xj) > R/2`, hence
the intersection Bxi

(R/2`+1) ∩ Bxj
(R/2`+1) is necessarily

empty.
Finally, property (10) implies

µ(∪ki=1Bxi
(R/2`+1)) =

k∑
i=1

µ(Bxi
(R/2`+1)).

On the other hand, applying ` + 2 times the fact that µ is
c-doubling, we deduce that for all i = 1, . . . , k,

µBxi
(R/2`+1) ≥ c−`−2µBxi

(2R)

≥ c−`−2µBx(R),



where we used the fact that Bx(R) ⊂ Bxi
(2R), which follows

from xi ∈ Bx(R). To conclude, note that

∪ki=1Bxi
(R/2`+1) ⊂ Bx(2R).

We thus have:

cµ(Bx(R)) ≥ µ(Bx(2R))
≥ µ(∪ki=1Bxi(R/2

`+1))
≥ kc−`−2µ(Bx(R)).

The upper bound k ≤ c`+3 follows immediately.
We now need the following.

Lemma 2. Let δ ∈ (0, 1) verify δ > 1/3. Let the ball Bx(R)
be such that there exists a y ∈ N for which d(x, y) = R and
µ({y}) > 0. Then the following holds. Let ρ > 0 be such that
ρ < min(δ, (1 − δ)/2)R, and let ` > 0 be a positive integer
such that

2`
(
R

2
− ρ

1− δ

)
> R

2− δ
1− δ

. (11)

Then for any z ∈ Bx(R), one has

µ

(
Bz

(
ρ

1− δ

))
≤ (1− c−`)µ

(
Bx

(
R

1− δ

))
. (12)

Proof: Let z ∈ Bx(R) be fixed. We let B′ := Bz(
ρ

1−δ ).
Note that by the assumption that ρ ≤ δR, it follows that B′

is included in the ball B := Bx( R
1−δ ).

By assumption, there exists y ∈ N such that d(x, y) =
R and µ({y}) > 0. Thus either d(x, z) or d(y, z) is lower-
bounded by R/2: indeed, by the triangle inequality,

d(x, y) = R ≤ d(x, z) + d(y, z).

Assume first that d(x, z) ≥ R/2. By the triangle inequality
again, for any z′ ∈ B′, one has

d(x, z) ≤ d(x, z′) + d(z, z′)

so that
d(x, z′) ≥ R

2
− ρ

1− δ
·

Note that the lower bound R/2−ρ/(1−δ) is positive under the
assumptions ρ < (1− δ)/2R. In other words, for any α > 0,
the ball B′ is disjoint from the ball B′′ defined as

B′′ := Bx

(
R

2
− ρ

(1− δ)
− α

)
.

This entails that

µ(B′′) ≤ µ(B)− µ(B′). (13)

Let now ` be an integer verifying (11). A fortiori, ` is such
that, for some small enough positive α,

2`
(
R

2
− ρ

1− δ
− α

)
≥ R

1− δ
·

This entails that

µ(B) ≤ µ
(
Bx

(
2`
(
R

2
− ρ

1− δ
− α

)))
.

Applying ` times the c-doubling property of µ, this inequality
further implies

µ(B) ≤ c`µ(B′′).

Combined with (13), this last inequality leads to

µ(B′) ≤ (1− c−`)µ(B),

which is the desired bound (12).
Assume next that d(x, z) < R/2, so that necessarily d(y, z) ≥

R/2. Now for any z′ ∈ B′, by the triangle inequality one has

d(y, z) ≤ d(y, z′) + d(z, z′),

so that, defining now B′′′ to be

B′′′ := By

(
R

2
− ρ

(1− δ)
− α

)
.

For some arbitrarily small α > 0, the two balls B′ and B′′′

are disjoint. Note further that B′′′ is contained B, since for
any z′′′ ∈ B′′′, one has

d(x, z′′′) ≤ d(x, y) + d(y, z′′′) ≤ R+R/2,

and the assumption δ > 1/3 ensures that (3/2)R ≤ R/(1−δ),
which is the radius of B.

Similar to (13) we thus have

µ(B′′′) ≤ µ(B)− µ(B′).

Let now ` be a positive integer verifying (11). An application
of the triangle inequality implies that the inclusion

B ⊂ Bl
(

2`
(
R

2
− ρ

1− δ
− α

))
must hold for small enough α > 0. Indeed, for any point
x′ ∈ B, one has

d(y, x′) ≤ R+
R

1− δ
= R

2− δ
1− δ

,

and property (11) guarantees that x′ is in the corresponding
ball By(2`(R/2 − ρ/(1 − δ) − α)). Finally, using ` times
the c-doubling property of µ allows to establish that µ(B) ≤
c`µ(B′′′); combined with (13), this leads as in the previous
case to the desired property (12).

Remark 1. For a given R > 0, the assumptions of Lemma 2
are verified if one takes ρ = R/4, δ = 1/3+ε for small enough
ε > 0, and ` = 5. Indeed, the condition ρ < min(δ, (1 −
δ)/2)R holds because 1/4 < 1/3. Writing (1−δ)−1 = (3/2)+
ε′ for some arbitrary small positive ε′, Condition (11) reads
after simplification by R:

2`(1/2− (1/4)(3/2 + ε′)) > 1 + 3/2 + ε′,

which is clearly verified for ` = 5 and ε′ > 0 small enough.



Algorithm 2 ε-Net Content Search
Input: Oracle(·, ·, t), demand distribution µ, starting object s,

embedding (M, d).
Output: target t.

1: Initialize x0 ← s.
2: Initial the search radius R0 according to R0 :=

supy∈N d(x0, y).
3: j ← 0.
4: while xj 6= t do
5: Construct an

(
Ri

4

)
-net.

6: By using the comparison oracle, find the closest object
xj+1 to the target t among the points in the

(
Rj

4

)
-net

and xj .
7: Update the search radius

Rj+1 = inf{R : µ(Bxj+1
(R)) = µ(Bxj+1

(Rj/4))}.

8: j ← j + 1.
9: end while

B. Algorithm and Upper Bound

The algorithm we propose based on ε-nets can be found in
Algorithm 2. In short, the search strategy we consider proceeds
in stages. We shall denote these stages as j = 1, . . . , S. At the
beginning of a stage j, we are given the current best exemplar,
denoted xj , and the current radius of the search, Rj , which is
such that in view of the searcher’s previous answers, the search
target is necessarily within the ball Bj := Bxj

(Rj). We shall
further impose that at each stage j, the search radius Rj is
such that there exists a point yj ∈ N such that µ({yj}) > 0
and d(xj , yj) = Rj , i.e., the demand distribution µ puts some
mass on the boundary of Bj .

The first stage is initialized by picking an arbitrary initial
candidate x1 ∈ N . The corresponding initial search radius
is then defined as R1 := supy∈supp(µ) d(x1, y). Hence, by
construction, this initial ball B1 indeed has non-zero mass at
its boundary.

The search during an arbitrary stage j proceeds as follows.
The current search center xj is completed by additional points
of Bj to form a ρj-net of Bj , where ρj = Rj/4. Then the
searcher is asked to perform one comparison between her last
choice and each of the points of the net that are distinct from
xj . By the end of these comparisons, let x′j be the last selection
of the user. Clearly, this selection is among the points of the
net, that which is closest to the target of the search.

Since (in view of Lemma 1) the union of balls centred at
the points of the net, and with radius ρj , covers entirely the
current search ground Bj , it follows that necessarily the target
must lie in the ball Bx′

j
(ρj).

We need only one last operation to specify how the next
stage j + 1 is initialized. The center of search at stage j + 1
will be set to xj+1 := x′j . We know that the target lies within
Bxj+1

(ρj). We shall then specify the search radius Rj+1 to be
the smallest R such that µ(Bxj+1

(R)) = µ(Bxj+1
(ρj)). Thus

necessarily, Rj+1 ≤ ρj , and moreover the minimality of Rj+1

implies that measure µ puts some mass on the boundary of the
resulting search ball Bj+1. As such, our algorithm has indeed
ensured by construction that at any stage j (a) the target lies
in the current ball Bj and (b) the ball contains an object of
non-zero mass at its boundary.

We are now ready to bound the number of queries submitted
to the oracle by Algorithm 2.

Theorem 3. The expected search cost of Algorithm 2 can be
bounded by

C̄F ≤
(
c5 − 1

)(
1 +

H(µ)

log(1/(1− c−5))

)
. (14)

Proof: To begin with, observe that at each stage j the
searcher is asked to perform one comparison between her last
choice and each of the points of the ρj-net that are distinct
from xj . The size of this ρj-net is, by Lemma 1, at most c5.
Thus, at most c5 − 1 binary comparisons are needed at each
stage.

Denote again by x′j be the last selection of the user at stage
j. Let us now denote by πj := µ(Bxj

(Rj/(1− δ))) the mass
put by measure µ on the search ground Bj , after enlarging its
radius by a factor 1/(1 − δ), where δ = 1/3 + ε, for some
small ε chosen as in Remark 1. It now follows by Lemma 2
and Remark 1 that necessarily,

µ(Bx′
j
(ρj/(1− δ))) ≤ (1− c−5)πj .

Note also that, critically, by Lemma 2 and an induction
argument, it is guaranteed that at each stage j of the search

πj = µ(Bxj (Rj/(1− δ))) ≤ (1− c−5)j−1.

To conclude the proof, condition on the target element z ∈ N .
Considering its probability µ({z}) and the previous bound on
the probability of the search range after j stages, clearly the
search will have completed after j stages provided

(1− c−5)j−1 ≤ µ({z}),

or equivalently, provided

j ≥ 1 +
log(1/µ({z}))

log(1/(1− c−5))
·

The average number of stages, S̄, is then upper-bounded by

S̄ ≤
∑
z∈N

µ({z})
(

1 +
log(1/µ({z}))

log(1/(1− c−5))

)
= 1 +

H(µ)

log(1/(1− c−5))
·

Noting that, within a stage, at most c5− 1 comparisons are
performed, the upper-bound (14) follows.

We note again that Theorem 3 gives an upper bound which
is matching lower bound (7), up to a discrepancy in the ex-
ponent of the doubling constant c. In contrast however to
Algorithm 1, which could be implemented only using order-
ing relationships between objects rather than exact distances,
Algorithm 2 indeed requires full knowledge of the underly-
ing metric space. Interestingly, Algorithm 2 does not require



knowledge of the target distribution µ. All steps in the algo-
rithm (and, in particular, the shrinking of the ball Bj to ensure
it has non-zero mass at the boundary) can be implemented as
long as the support supp(µ) is known.

VII. CONCLUSIONS

In this work, we studied the problem of content search
through comparisons (CSTC) under heterogeneous demands,
tying performance to the topology and the entropy of the
target distribution. Our study leaves several open problems.
The search strategy considered in Algorithm 2 relies on the
construction of ε-nets at different stage of the search, which
necessitates access to detailed information about the geometry
of the search space (M, d), but no information about the
demand distribution µ. A challenge could then be to propose
simpler strategies, relying on less information about the geom-
etry of the search space. Earlier work on comparison oracles
eschewed metric spaces altogether, exploiting what where re-
ferred to as disorder inequalities [8], [17], [25]. Applying these
under heterogeneity is also a promising research direction.
Another important issue is to study CSTC under unreliable
responses of the oracle. This is in particular very important in
practice.
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