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Abstract—We propose a novel architecture to design a neural
associative memory that is capable of learning a large number of
patterns and recalling them later in presence of noise. It is based
on dividing the neurons into local clusters and parallel plains,
an architecture that is similar to the visual cortex of macaque
brain. The common features of our proposed model with those of
spatially-coupled codes enable us to show that the performance
of such networks in eliminating noise is drastically better than
the previous approaches while maintaining the ability of learning
an exponentially large number of patterns. Previous work either
failed in providing good performance during the recall phase or
in offering large pattern retrieval (storage) capacities. We also
present computational experiments that lend additional support
to the theoretical analysis.

I. INTRODUCTION

The ability of the brain to memorize large quantities of data
and later recalling them from partially available information
is truly staggering. While relying on iterative operations of
simple (and sometimes faulty) neurons, our brain is capable
of retrieving the correct ”memory” with high degrees of
reliability even when the cues are limited or inaccurate.

Not surprisingly, designing artificial neural networks capa-
ble of accomplishing this task, called associative memory, has
been a major point of interest in the neuroscience community
for the past three decades. This problem, in its core, is
very similar to the reliable information transmission faced in
communication systems where the goal is to find mechanisms
to efficiently encode and decode a set of transmitted patterns
over a noisy channel. More interestingly, the novel techniques
employed to design good codes are extremely similar to those
used in designing and analyzing neural networks. In both
cases, graphical models, iterative algorithms, and message
passing play central roles.

Despite these similarities in the objectives and techniques,
we witness a huge gap in terms of the efficiency achieved by
them. More specifically, by using modern coding techniques,
we are capable of reliably transmitting 2rn binary vectors of
length n over a noisy channel (0 < r < 1). This is achieved
by intelligently introducing redundancy among the transmitted
messages, which is later used to recover the correct pattern
from the received noisy version. In contrast, until recently,
artificial neural associative memories were only capable of
memorizing O(n) binary patterns of length n [1], [2], [3].

Part of the reasons for this gap goes back to the assumption
held in the mainstream work on artificial associative memories
which requires the network to memorize any set of randomly
chosen binary patterns. While it gives the network a certain
degree of versatility, it severely hinders the efficiency.

To achieve an exponential scaling in the storage capacity
of neural networks Kumar et al. [4] suggested a different
viewpoint in which the network is no longer required to
memorize any set of random patterns but only those that
have some common structure, namely, patterns all belong to
a subspace with dimension k < n. Karbasi et al. [5] extended
this model to ”modular” neural architectures and introduced
a suitable online learning algorithm. They showed that the
modular structure improves the noise tolerance properties
significantly.

In this work, we extend the model of [5] further by linking
the modular structures to obtain a ”coupled” neural archi-
tecture. Interestingly, this model looks very similar to some
models for processing visual signals in the macaque brain [6].
We then make use of the recent developments in the analysis
of spatially-coupled codes by [7] and [8] to derive analytical
bounds on the performance of the proposed method. Finally,
using simulations we show that the proposed method achieves
much better performance measures compared to previous work
in eliminating noise during the recall phase.

II. RELATED WORK

Arguably, one of the most influential models for neural
associative memories was introduced by Hopfield [1]. A
”Hopfield network” is a complete graph of n neurons that
memorizes a subset of randomly chosen binary patterns of
length n. It is known that the pattern retrieval capacity
(i.e., maximum number of memorized patterns) of Hopfield
networks is C = (n/2 log(n)) [9].

There have been many attempts to increase the pattern
retrieval capacity of such networks by introducing offline
learning schemes (in contrast to online schemes) [2] or multi-
state neurons (instead of binary) [3], all of which resulted in
memorizing at most O(n) patterns.

By dividing the neural architecture into smaller disjoint
blocks, Venkatesh [10] increased the capacity to Θ

(
bn/b

)
(for

random patterns), where b = ω(lnn) is the size of blocks. This
is a huge improvement but comes at the price of limited worst-
case noise tolerance capabilities. Specifically, due to the non-
overlapping nature of the clusters (blocks), the error correction
is limited by the performance of individual clusters as there
is no inter-cluster communication. With overlapping clusters,
one could hope for achieving better error correction, which is
the reason we consider such structures in this paper.

More recently, a new perspective has been proposed with
the aim of memorizing only those patterns that posses some
degree of redundancy. In this framework, a tradeoff is being



made between versatility (i.e., the capability of the network
to memorize any set of random patterns) and the pattern
retrieval capacity. Pioneering this frontier, Gripon and Berrou
[11] proposed a method based on neural clicks which increases
the pattern retrieval capacity potentially to O(n2/ log(n)) with
a low complexity algorithm in the recall phase. The proposed
approach is based on memorizing a set of patterns mapped
from randomly chosen binary vectors of length k = O(log(n))
to the n-dimensional space. Along the same lines, by consider-
ing patterns that lie in a subspace of dimension k < n, Kumar
et al. were able to show an exponential scaling in the pattern
retrieval capacity, i.e., C = O(an), with some a > 1. This
model was later extended to modular patterns, i.e., those in
which patterns are divided into sub-patterns where each sub-
pattern come from a subspace [5]. The authors provided a
simple iterative learning algorithm that demonstrates a better
performance in the recall phase as compared to [4].

In this paper, we follow the same line of thought by linking
several instances of the model proposed in [5] in roder to
have a ”coupled” structure. More specifically, the proposed
model is based on overlapping local clusters, arranged in
parallel planes, with neighboring neurons. At the same time,
we enforce sparse connections between various clusters in
different planes. The aim is to memorize only those patterns
for which local sub-patterns in the domain of each cluster show
a certain degree of redundancy. On the one hand, the obtained
model is similar to neural modules in the visual cortex of the
macaque brain [6]. On the other hand, it is closely related to
the spatially-coupled Generalized LDPC code (GLDPC) with
Hard Decision Decoding (HDD) proposed in [12]. This simi-
larity helps us borrow analytic tools developed for analyzing
such codes [7] and investigate the performance of our proposed
neural error correcting algorithm.

The proposed approach enjoys the simplicity of message
passing operations performed by neurons as compared to the
more complex iterative belief propagation decoding procedure
of spatially coupled codes [8]. This simplicity may lead to an
inferior performance but already allows us to outperform the
prior error resilient methods suggested for neural associative
memories in the literature.

III. PROBLEM SETTING AND NOTATIONS

In this paper, we work with non-binary neural networks
where the state of each neurons is a bounded non-negative
integer (which can be thought of as the short-term firing rate of
neurons in a real neural network). Like other neural networks,
neurons could only perform simple operations, i.e. linear
summation and non-linear thresholding. More specifically, a
neuron x updates its state based on the states of its neighbors
{si}ni=1 as follows:

1) It computes the weighted sum h =
∑n
i=1 wisi, where

wi denotes the weight of the input link from si.
2) It updates its state as x = f(h), where f : R → S is a

possibly non-linear function.
Let X denote a dataset of C patterns of length n where the

patterns are integer-valued with entries in S = {0, . . . , S−1}.

In this paper, we are interested in designing a neural network
that is capable of memorizing these patterns in such a way
that later, and in response to noisy queries, the correct pattern
will be returned. To this end, we break the patterns into
smaller pieces/sub-patterns and learn the resulting sub-patterns
separately. Furthermore, as our objective is to memorize those
patterns that are highly correlated, we only consider a dataset
in which the sub-patterns belong to a subspace (or have
negligible minor components). Thus, one could memorize the
dataset by learning the dual vectors orthogonal to the sub-
spaces. We refer to these vectors as constraints.

More specifically, and to formalize the problem in a way
which is similar to the literature on spatially coupled codes,
we divide each pattern into L sub-patterns of the same size
and refer to them as planes. Within each plane, we further
divide the patterns into D overlapping clusters, i.e., an entry
in a pattern can lie in the domain of multiple clusters. We
also assume that each element in plane ` is connected to at
least one cluster in planes ` − Ω, . . . , ` + Ω (except at the
boundaries). Therefore, each entry in a pattern is connected to
2Ω + 1 planes, on average.

An alternative way of understanding the model is to consider
2D datasets, i.e., images. In this regard, each row of the image
corresponds to a plane and clusters are the overlapping ”re-
ceptive fields” which cover an area composed of neighboring
pixels in different rows (planes). This is in fact very similar to
the configuration of the receptive fields in human visual cortex
[13]. Our assumptions on strong correlations then translates
into assuming strong linear dependencies within each receptive
field for all patterns in the dataset.

Noise model: We consider an additive noise model, where
the noise is an integer-valued vector of size n and for sim-
plicity we assume that its entries are {−1, 0,+1}, where a
−1 (resp. +1) corresponds to a neuron skipping a spike (resp.
fire one more spike than expected).1 The noise probability is
denoted by pe and each entry of the noise vector is +1 or −1
with probability pe/2. 2

Pattern Retrieval Capacity: This is the maximum number
of patterns that can be memorized by a network while still
being able to return reliable responses in the recall phase.

IV. LEARNING PHASE

To ”memorize” the patterns, we learn a set of vectors that
are orthogonal to the sub-patterns in each cluster, using the
algorithm proposed in [5]. The output of the learning algorithm
is an m`,d × n`,d matrix W (`,d) for cluster d in plane `.
The rows of this matrix correspond to the dual vectors and
the columns correspond to the corresponding entries in the
patterns. Therefore, by letting x(`,d) denote the sub-pattern
corresponding to the domain of cluster d of plane `, we have

W (`,d) · x(`,d) = 0. (1)

1Other noise models, such as real-valued noise, can be considered as well.
However, the thresholding function f : R→ S will eventually lead to integer-
valued ”equivalent” noise in our system.

2Our algorithm can also deal with erasures. Note that an erasure at node
xi corresponds to an integer noise with the negative value of xi.
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Fig. 1: A coupled neural associative memory.

Fig. 2: A connectivity graph with neural planes and super nodes. It
corresponds to plane 1 of Fig. 1.

The matrices W (`,d) form the connectivity matrices of
our neural graph in which we consider each cluster as a
bipartite graph composed of pattern and constraint neurons.
Fig. 1 illustrates the model where the circles and rectangles
correspond to pattern and constraint neurons, respectively.
Cluster d in plane ` contains m`,d constraint neurons and
is connected to n`,d pattern neurons. The constraint neurons
do not have any overlaps (i.e. each one belongs to only one
cluster) whereas the pattern neurons can have connections to
multiple clusters and planes. To ensure good error correction
capabilities we aim to keep the neural graph sparse (this
model shows significant similarity to the neural architecture
of macaque brain [6]).

We also consider the overall connectivity graph of plane
`, denoted by W̃ (`), in which the constraint nodes in each
cluster are compressed into one super node. Any pattern node
that is connected to a given cluster is now connected through
an unweighted edge to the corresponding super node. Figure 2
illustrates this graph for plane 1 in Figure 1.

V. RECALL PHASE

The main goal of our architecture is to retrieve correct
memorized patterns in response to noisy queries. At this point,
the neural graph is learned (fixed) and we are looking for a
simple iterative algorithm to eliminate noise from queries. The
proposed recall algorithm in this paper is the extension of the
one in [5] to the coupled neural networks. For the sake of
completeness, we briefly discuss the details of the approach
suggested in [5] and explain the extension subsequently.

The recall method in [5] is composed of two types of
separate algorithms: local (or intra-cluster) and global (or
inter-cluster). The local algorithm tries to correct errors within
each cluster by the means of simple message-passings. It relies
on 1) pattern neurons transmitting their state to the constraint
neurons and then on 2) constraint neurons checking if the
constraints are met (i.e., the values transmitted by the pattern
nodes to the constraint nodes should sum to zero). If not, the
constraint neurons send a message telling the direction of the
violation i.e., whether the input sum is less or greater than zero.

Algorithm 1 Error Correction Within Cluster [5]

Input: Matrices W (`,d), threshold ϕ, iteration tmax.
Output: Correct memorized sub-pattern x(`,d).

1: for t = 1→ tmax do
2: Forward iteration: Calculate h

(`,d)
i =∑n

j=1W
(`,d)
ij x

(`,d)
j , and set y(`,d)

i = sgn(h
(`,d)
i ).

3: Backward iteration: Each neuron x(`,d)
j computes

g
(`,d)
j =

∑m`,d

i=1 W
(`,d)
ij y

(`,d)
i∑m`,d

i=1 |W
(`,d)
ij |

.

4: Update the state of each pattern neuron j according to
x

(`,d)
j = x

(`,d)
j + sgn(g

(`,d)
j ) only if |g(`,d)

j | > ϕ.
5: end for

Algorithm 2 Error Correction of the Coupled Network

Input: Connectivity matrix (W (`,d),∀`,∀d), iteration tmax

Output: Correct memorized pattern x = [x1, x2, . . . , xn]
1: for t = 1→ tmax do
2: for ` = 1→ L do
3: for d = 1→ D do
4: Apply Algorithm 1 to cluster d of neural plane `.
5: Update the value of pattern nodes x(`,d) only if all

the constraints in the clustered are satisfied.
6: end for
7: end for
8: end for

The pattern neurons then update their state according to the
received feedback from the constraint neurons on a majority
voting basis. The process is summarized in Alg. 1.

The overall error correction properties of Alg. 1 is fairly
limited. In fact, it can be shown that in a given cluster,
the algorithm could correct a single input error (i.e only
one pattern neurons deviating from its correct state) with
probability 1− (d̄/m)dmin , where d̄ and dmin are the average
and minimum degree of the pattern nodes3. To overcome this
drawback, Karbasi et al. [5] proposed a sequential inter-cluster
procedure by applying Alg. 1 in a Round Robbin fashion to
each cluster. This scheduling technique is in esprit similar to
Peeling Algorithm used in LDPC codes.

Inspired by this boost in the performance, we can stretch the
error correction capabilities even further by coupling several
neural ”planes” with many clusters together, as mentioned ear-
lier. We need to modify the global error correcting algorithm in
such a way that it first acts upon the clusters of a given plane
in each round before moving to the next plane. The whole
process is repeated few times until all errors are corrected
or a threshold on the number of iterations is reached (tmax).
Alg. 2 summarizes our approach.

3Simulations show that clusters can potentially correct e > 1 errors with a
non-zero probability where e is still a constant, in terms of n, and very small.



VI. PERFORMANCE ANALYSIS

In this section we analyze the performance of Alg. 2 and
compare its two variants, namely, constrained and uncon-
strained versions. In the constrained coupled neural error
correction, we provide the network with some side information
during the recall phase. This is equivalent to ”freezing” a few
of the pattern neurons to known and correct states, similar to
spatially-coupled codes [8], [7]. In the case of neural associa-
tive memory, the side information can come from the context.
For instance, when trying to fill in the blank in the sentence
”The at flies”, we can use the side information (flying) to
guess the correct answer among multiple choices. Without this
side information, we cannot tell if at corresponds to bat or
cat.

In the other variant, called the unconstrained coupled neural
error correction, we perform the error correction without pro-
viding any side information. This is similar to many standard
recall algorithms in neural networks and serves as a benchmark
to compare our method with those of other work [4].

Let z(`)(t) denote the average probability of error among
pattern nodes across neural plane ` in iteration t of Alg. 2.
Thus, a cluster node in plane ` receives noisy messages from
its neighbors with an average probability z̄(`):

z̄(`) =
1

2Ω + 1

Ω∑
j=−Ω

z(`−j) s.t. z(l) = 0, ∀l /∈ {1, . . . , L}.

Our goal is to derive a recursion for z(`)(t + 1) in terms of
z(`)(t) and z̄(`)(t). To this end, in the graph W̃ (`) let λ(`)

i

and ρ
(`)
j be the fraction of edges (normalized by the total

number of edges in graph W̃ (`)) connected to pattern and super
nodes with degree i and j, respectively. We define the degree
distribution polynomials in plane ` from an edge perspective
as λ(`)(x) =

∑
i λ

(`)
i xi and ρ(`)(x) =

∑
j ρ

(`)
i xj−1.

Lemma 1. Let us define g(z) = 1 − ρ(1 − z) −∑e−1
i=1

zi

i!
diρ(1−z)
dzi and f(z; pe) = peλ(z), where e is the

number of errors each cluster can correct. Then,

z(`)(t+ 1) = f

(
1

2Ω + 1

Ω∑
i=−Ω

g(z̄(`−i)(t); pe)

)
. (2)

Proof sketch: Let z(`)
j (t) denote the probability that a given

pattern neuron with degree j in plane ` sends an erroneous
message. This happens if it was noisy in the first place (with
probability pe) and all of its neighboring cluster nodes send
erroneous messages in iteration t (with probability π̄(`)(t)).
Thus z(`)

j (t+ 1) = pe
(
π̄(`)(t)

)j
and z(`)(t+ 1) = E{z(`)

j (t+

1)} = peλ
(
π̄(`)(t)

)
. In a longer version of this article [15]

we show that π̄(`)(t) = 1
2Ω+1

∑Ω
i=−Ω π

(`−i)(t), which proves
the lemma. �

The decoding will be successful if z(`)(t+1) < z(`)(t), ∀`.
As a result, we look for the maximum pe such that

f

(
1

2Ω + 1

Ω∑
i=−Ω

g(z̄(`−i)(t); pe)

)
< z(`) for z(`) ∈ [0, pe].

Let p†e and p∗e be the maximum pe’s that admit successful
decoding for the uncoupled and coupled systems, respectively.
We follow the approach recently proposed in [7] and define
a potential function to track the evolution of Eq. 2. Let z =
{z(1), . . . , z(L)} denote the vector of average error probability
for the planes. Further, let f(z; pe) : RL → RL and g(z) :
RL → RL be two component-wise vector functions such that
[f(z; pe)]i = f(zi; pe) and [g(z)]i = g(zi), where f(zi; pe) and
g(zi) are defined in Lemma 1. Using these definitions, we can
rewrite Eq. 2 in the vector form as:

z(t+ 1) = A>f(Ag(z(t)); pe) (3)

where A is the coupling matrix defined as4: Ω

A = 1
2Ω+1





1 1 . . . 1 0 0 0 . . . 0 0

1 1 . . . 1 1 0 0 . . . 0 0
...

0 0 . . . 0 0 1 1 . . . 1 1

0 0 . . . 0 0 0 1 . . . 1 1

At this point, the potential function of the coupled system
could be defined as:

U(z; pe) =

∫
C

g′(u)(u−A>f(Ag(u)).du

= g(z)>z−G(z)− F (Ag(z); pe) (4)

where g′(z) = diag([g′(ui)]), G(z) =
∫
C

g(u) ·du and F (z) =∫
C

f(u) · du.
A similar quantity can be defined for the uncoupled (scalar)

system as Us(z; pe) = zg(z)−G(z)−F (g(z); pe) [7], where
z is the average probability of error in pattern neurons. The
scalar potential function is defined in the way that U ′s(z; pe) >
0 for pe ≤ p†e. In other words, it ensures that z(t + 1) =
f(g(z(t); pe) < z(t) (successful decoding) for pe ≤ p†e.

Furthermore, let us define p∗e = sup{pe|min(Us(z; pe) ≥
0}. Thus, in order to find p∗e , it is sufficient to find the
maximum pe such that min{Us(z; pe)} > 0. We will show
that the constrained coupled system achieves successful error
correction for pe < p∗e . Intuitively, we expect to have p†e ≤ p∗e
(side information only helps), and as a result a better error
correction performance for the constrained system. Our ex-
perimental result will confirm this intuition later in the paper.

Let ∆E(pe) = minz Us(z; pe) be the energy gap of the
uncoupled system for pe ∈ (p†e, 1]. The next theorem borrows
the results of [7] and [8] to show that the constrained coupled
system achieves successful error correction for pe < p∗e .

Theorem 2. In the constrained system, when pe < p∗e the
potential function decreases in each iteration. Furthermore, if
Ω > ‖U ′′(z;pe)‖∞

∆E(pe) , the only fixed point of Eq. 3 is 0.

Proof sketch: The proof is a straightforward extension of
[7] and is given in [15].�

4Matrix A corresponds to the unconstrained system. A similar matrix can
be defined for the constrained case.



VII. PATTERN RETRIEVAL CAPACITY

The following theorem shows that the number of patterns
that can be memorized by the proposed scheme is exponential
in n, the pattern size.

Theorem 3. Let X be the C × n dataset matrix, formed by C
vectors of length n with entries from the set S. Let also k = rn
for some 0 < r < 1. Then, there exists a set of patterns for
which C = arn, with a > 1, and rank(X ) = k < n.

Proof sketch: First, note that the storage capacity depends
only on the size of the subspace that sub-patterns come
from and not on the learning or recall algorithms (except
for obvious effects on running time). Thus, to prove that C
could exponentially scale with n, we show that there exists a
subspace with exponentially large number of members (in n)
that satisfies the requirements of the theorem. The details are
given in the longer version of this article [15].

VIII. SIMULATIONS

In this paper, we are mainly interested in the performance
of the recall phase. Thus, we assume that the learning phase
is done (by using the proposed algorithm in [5]) and we have
the weighted connectivity graphs available. Given the weight
matrices and the fact that they are orthogonal to the sub-
patterns, we can assume w.l.o.g that in the recall phase we
should only recall the all-zero pattern from its noisy version.

We treat the patterns in the database as (artificial) 2D
images of size 64 × 64. Specifically, we generate a random
network with 29 planes and 29 clusters within each plane (i.e.,
L = D = 29). Each local cluster is composed of 8×8 neurons
and each pattern neuron (pixel) is connected to 4 consecutive
planes (except at the boundaries), i.e. Ω ' 2. This is achieved
by moving the 8× 8 rectangular window over the 2D pattern
horizontally and vertically.

We investigated the performance of the recall phase by
randomly generating a 2D noise pattern in which each entry is
set to ±1 with probability pe/2 and 0 with probability 1−pe.
We then apply Alg. 2 with tmax = 10 to eliminate the noise.

Figure 3 illustrates the final error rate of the proposed
algorithm, for the constrained and unconstrained system. For
the constrained system, we fixed the state of a patch of neurons
of size 3 × 3 at the four corners of the 2D pattern. The
results are also compared to the similar algorithms in [4]
and [5] (uncoupled systems). In [4] (the dashed-dotted curve),
there are no clustering while in [5] the network is divided
into 50 overlapping clusters all lying on a single plane (the
dotted curve). Although clustering improves the performance,
it is still inferior than the coupled system with some side
information (the solid curve). Even though the same recipe
(i.e., Alg. 1) is used in all approaches, the differences in the
architectures has a profound effect on the performance. One
also notes the sheer positive effect of network size on the
performance (the dotted vs. dashed curves).

Table I shows the thresholds p†e and p∗e for different values
of e. From Figure 3 we notice that p∗e ' 0.39 and p†e ' 0.1
which is close to the thresholds for e = 2 in Table I.
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Fig. 3: The final pattern error probability for the constrained and
unconstrained coupled neural systems.

p†e p∗e
e = 1 0.078 0.114
e = 2 0.197 0.394

TABLE I: Thresholds for uncoupled (p†e) and coupled (p∗e) systems.
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