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Abstract

Learning about the social structure of hidden and hard-to-
reach populations — such as drug users and sex workers
— is a major goal of epidemiological and public health re-
search on risk behaviors and disease prevention. Respondent-
driven sampling (RDS) is a peer-referral process widely used
by many health organizations, where research subjects recruit
other subjects from their social network. In such surveys, re-
searchers observe who recruited whom, along with the time
of recruitment and the total number of acquaintances (net-
work degree) of respondents. However, due to privacy con-
cerns, the identities of acquaintances are not disclosed. In this
work, we show how to reconstruct the underlying network
structure through which the subjects are recruited. We formu-
late the dynamics of RDS as a continuous-time diffusion pro-
cess over the underlying graph and derive the likelihood of the
recruitment time series under an arbitrary inter-recruitment
time distribution. We develop an efficient stochastic optimiza-
tion algorithm called RENDER (REspoNdent-Driven nEtwork
Reconstruction) that finds the network that best explains the
collected data. We support our analytical results through an
exhaustive set of experiments on both synthetic and real data.

Introduction

Random sampling is an effective way for researchers to
learn about a population of interest. Characteristics of the
sample can be generalized to the population of interest us-
ing standard statistical theory. However, traditional random
sampling may be impossible when the target population is
hidden, e.g. drug users, men who have sex with men, sex
workers and homeless people. Due to concerns like privacy,
stigmatization, discrimination, and criminalization, mem-
bers of hidden populations may be reluctant to participate in
a survey. In addition to the hidden populations for which no
sampling “frame” exists, there are rare populations of great
research interest, marked by their tiny fractions in the en-
tire population. It is unlikely that random sampling from
the general population would accrue a reasonable sample
from a very rare population. However, it is often the case
that members of hidden or rare populations know each other
socially. This suggests that social referral would be an ef-
fective method for accruing a large sample. To this end,
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researchers have developed a variety of social link-tracing
survey designs. The most popular is respondent-driven sam-
pling (RDS) (Heckathorn 1997).

In RDS, a small set of initial subjects, known as “seeds”
are selected, not necessarily simultaneously, from the target
population. Subjects are given a few coupons, each tagged
with a unique identifier, which they can use to recruit other
eligible subjects. Participants are given a reward for being
interviewed and for each eligible subject they recruit using
their coupons. Each subject reports their degree, the number
of others whom they know in the target population. No sub-
ject is permitted to enter the study twice and the date and
time of each interview is recorded.

While RDS can be an effective recruitment method, it re-
veals only incomplete social network data to researchers.
Any ties between recruited subjects along which no recruit-
ment took place remain unobserved. The social network of
recruited subjects is of great interest to sociologists, epi-
demiologists and public health researchers since it may in-
duce dependencies in the outcomes of sampled individuals.
Fortunately, RDS reveals information about the underlying
social network that can be used to (approximately) recon-
struct it. By leveraging the time series of recruitments, the
degrees of recruited subjects, coupon information, and who
recruited whom, it is possible to interpret the induced sub-
graph of RDS respondents as a simple random graph model
(Crawford 2016).

In this paper, we introduce a flexible and expressive
stochastic model of RDS recruitment on a partially observed
network structure. We derive the likelihood of the observed
time series; the model admits any edgewise inter-recruitment
time distribution. We propose a stochastic optimization algo-
rithm RENDER (REspoNdent-Driven nEtwork Reconstruc-
tion) to estimate unknown parameters and the underlying
social network. We conduct extensive experiments, on syn-
thetic and real data, to confirm the accuracy and the recon-
struction performance of RENDER. In particular, we apply
RENDER to reconstruct the network of injection drug users
from an RDS study in St. Petersburg, Russia.

Related Work

RDS has been modeled as a random walk with replacement
on a graph at its equilibrium distribution (Heckathorn 1997;
Salganik and Heckathorn 2004; Volz and Heckathorn 2008;
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Goel and Salganik 2009; Gile and Handcock 2010), and un-
der this argument the sampling probability is proportional
to degree, which is the basis for an estimator of the popula-
tion mean (Heckathorn 2002; Salganik 2006). In this paper,
we adopt an approach that focuses on the network structure
estimable from the RDS sample using recruitment informa-
tion (Crawford 2016). Crawford (2016) assumes that edge-
wise inter-recruitment times follow the exponential distri-
bution, but this approach is relatively inflexible. In many
other contexts, dynamic or random processes can reveal
structural information of an underlying, partially observed,
network (Kramer et al. 2009; Shandilya and Timme 2011;
Linderman and Adams 2014). Network reconstruction and
the edge prediction problem have been studied for diffu-
sion processes where multiple realizations of the process on
the same network are available (Liben-Nowell and Klein-
berg 2007; Gomez Rodriguez, Leskovec, and Krause 2010;
Gomez Rodriguez et al. 2011). In the case of RDS, recon-
struction is particularly challenging because only a single re-
alization of the diffusion process is observed. Furthermore,
we must account for the role of coupons in recruitment as
they intricately introduce bias. However, in contrast to gen-
eral diffusion processes over graphs, some important net-
work topological information is revealed by RDS. In this
study, we leverage all the available data routinely collected
during real-world RDS studies.

Problem Formulation

We conform to the following notation throughout the paper.
Suppose that f is a real-valued function and that v is a vec-
tor. Then f(v) is a vector of the same size as vector v and
the i-th entry of f(v) is denoted by f(v)i, whose value is
given by f(vi). The transposes of matrix A and vector v
are written as A′ and v′, respectively. And let 1 be the all-
ones column vector.

Dynamics of Respondent-Driven Sampling

We characterize the social network of the hidden popula-
tion as a finite undirected simple graph G = (V,E) with
no parallel edges or self-loops. Members of the hidden
population are vertices; {i, j} ∈ E implies that i ∈ V
and j ∈ V know each other. Using RDS, researchers re-
cruit members from the hidden population into the study.
The time-varying recruitment-induced subgraph {GS(t) =
(VS(t), ES(t)) : 0 ≤ t ≤ tF } is a nested collection of
subgraphs of G, where tF is the termination time of the
study. For all 0 ≤ t ≤ tF , GS(t) is a subgraph of G. Here,
GS(0) is the null graph since there are no subjects in the
study initially. For simplicity, we write GS = (VS , ES) for
GS(tF ) = (VS(tF ), ES(tF )), and call this the recruitment-
induced subgraph or induced subgraph unless we explic-
itly specify the time t. The vertex set of the time-varying
recruitment-induced subgraph at time t (i.e., GS(t)) denotes
the members in the hidden population that are known to the
study by time t. The subgraph GS(t) is induced by the vertex
set VS(t); i.e., ES(t) = {{i, j}|i, j ∈ VS(t), {i, j} ∈ E}.
The time-varying recruitment-induced subgraph evolves in
the following way (Crawford 2016).

1. At time t̃, researchers recruit a subject in the population as
a seed. This subject is included in the vertex set VS(t) of
GS(t) for all t ≥ t̃. Researchers may provide this subject
with coupons to recruit its neighbors.

2. Once recruited into this study (either by researchers or its
neighbors) at time t̃, subjects currently holding coupons
will attempt to recruit their yet-unrecruited neighbors.
The inter-recruitment time along each edge connecting a
recruiter with an unrecruited neighbor is i.i.d. with cdf
F (t). Recruitment happens when a neighbor is recruited
into the study and is provided with a number of coupons.
A successful recruitment costs the recruiter one coupon.

The directed recruitment graph is GR = (VR, ER), where
VR = VS(tF ) is the set of members in the study at the final
stage. For two subjects i, j ∈ VR, (i, j) ∈ ER if and only
if i recruits j. Note that the subjects recruited by researchers
(i.e., the seeds) have zero in-degree in GR. Let n denote the
cardinality of VR (equivalently VS(tF )). For simplicity, we
label the subject recruited in the ith recruitment event by
i. The labels of the subjects in the study are 1, 2, 3, . . . , n.
The vector of recruitment times is t = (t1, t2, t3, . . . , tn),
where ti is the recruitment time of subject i. In shorthand,
we write τ(i; j) = tj−1 − ti for i < j. Let C be the n ×
n coupon matrix whose element Cij = 1 if subject i has
at least one coupon just before the jth recruitment event,
and zero otherwise. The rows and columns of the coupon
matrix are ordered by subjects’ recruitment time. The degree
vector is d = (d1, d2, d3, . . . , dn)

′, where di is the degree of
i in G. At time t (where t �= ti for i = 1, 2, 3, . . . , n), if a
subject has at least one coupon and at least one neighbor not
in the study, we term it a recruiter at time t; if a subject has
not entered the study and has at least one neighbor with at
least one coupon, we term it a potential recruitee at time t.
We assume that the observed data from a RDS recruitment
process consist of Y = (GR,d, t,C).

Likelihood of Recruitment Time Series

We assume that the inter-recruitment time along an edge
connecting a recruiter and potential recruitee is i.i.d. with
cdf F (t). Let Fs(t) = Pr [W ≤ t |W > s], where W is the
random inter-recruitment time and Pr [W ≤ t] = F (t). We
write fs(t) = F ′s(t) for the corresponding conditional pdf.
Let Ss(t) = 1 − Fs(t) be the conditional survival function
and Hs(t) = fs(t)/Ss(t) be the conditional hazard func-
tion.

We now derive a closed-form expression for the likeli-
hood of the recruitment time series L(t|GS , θ). In what fol-
lows, let M be the set of seeds, and let A denote the adja-
cency matrix representation of the recruitment-induced sub-
graph at the final stage GS ; thus we use GS and A inter-
changeably throughout this paper.

Theorem 1. (Proof in (Chen, Crawford, and Karbasi
2015)). Let R(i) and I(i) be the recruiter set and poten-
tial recruitee set just before time ti, respectively, and M be
the set of seeds. The following statements with respect to the
likelihood of the recruitment time series hold.
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1. The likelihood of the recruitment time series is given by

L(t|GS , θ)

=

n∏
i=1

⎛
⎝ ∑

u∈R(i)

|Iu(i)|Hτ(u;i)(ti − tu)

⎞
⎠

1{i/∈M}

×
∏

j∈R(i)

S
|Ij |
τ(j;i)(ti − tj),

where τ(u; i) = ti−1 − tu.
2. Let m and u be column vectors of size n defined as mi =

1{i /∈ M} and u = d − A · 1, and let H and S be
n × n matrices, defined as Hui = Hτ(u;i)(ti − tu) and
Sji = logSτ(j;i)(ti−tj). Furthermore, we form matrices
B = (C ◦ H) and D = (C ◦ S), where ◦ denotes the
Hadamard (entrywise) product. We let

β = log(B′u+ LowerTri(AB)′ · 1)
δ = D′u+ LowerTri(AD)′ · 1,

where LowerTri(·) denotes the lower triangular part (di-
agonal elements inclusive) of a square matrix. Then, the
log-likelihood of the recruitment time series can be writ-
ten as

l(t|GS , θ) = m′β + 1′δ.

Network Reconstruction Problem

Given the observed time series, we seek to reconstruct the
n× n binary symmetric, zero-diagonal adjacency matrix A
of GS and the parameter θ ∈ Θ (Θ is the parameter space)
that maximizes Pr(A, θ|t). Recall that we use GS and A
interchangeably throughout this paper. We have

Pr(A, θ|t) ∝ L(t|A, θ) Pr(A, θ),

where Pr(A, θ) is the prior distribution for (A, θ). The con-
straint for the parameter θ is obvious: θ must reside in the pa-
rameter space Θ; i.e., θ ∈ Θ. Now we discuss the constraint
for the adjacency matrix A—we require that the adjacency
matrix A must be compatible.

We seek the matrix A that maximizes the probability
Pr(A, θ|t). However, we know that the directed recruitment
subgraph, if viewed as an undirected graph, must be a sub-
graph of the true recruitment-induced subgraph. Let AR be
the adjacency matrix of the recruitment subgraph when it is
viewed as an undirected graph; i.e., the (i, j) entry of AR is
1 if a direct recruitment event occurs between i and j (either
i recruits j or j recruits i), and is 0 otherwise. We require that
A be greater than or equal to AR entrywise. Recall that ev-
ery subject in the study reports its degree; thus the adjacency
matrix should also comply with the degree constraints. Fol-
lowing (Crawford 2016), we say that a symmetric, binary
and zero-diagonal matrix A is a compatible adjacency ma-
trix if A ≥ AR entrywise, and A · 1 ≤ d entrywise.

Problem Statement

Now we formulate this problem as an optimization problem.

Algorithm 1 RENDER: Alternating inference of GS and θ

Input: the observed data Y = (GR,d, t,C); the initial
guess for the distribution parameter θ, denoted by θ̂0; the
maximum number of iterations, ιmax.
Output: the estimated adjacency matrix A (denoted by Â)
and the estimated parameter θ (denoted by θ̂)
ι← 0
while ι < ιmax

Âι ← argmaxA is compatible L(t|A, θ̂ι) Pr(A, θ̂ι) (A-
step, we use Algorithm 2 here.)

θ̂ι+1 ← argmaxθ∈Θ L(t|Âι, θ) Pr(Âι, θ) (θ-step)
ι← ι+ 1

end while
Â← Âιmax−1

θ̂ ← θ̂ιmax

Problem. Given the observed data Y = (GS ,d, t,C), we
seek an n × n adjacency matrix A (symmetric, binary and
zero-diagonal) and a parameter value θ ∈ Θ that

maximizes L(t|A, θ) Pr(A, θ)
subject to A ≥ AR (entrywise)

A · 1 ≤ d (entrywise)

Alternating Inference of A and θ

Given the observed data Y, we wish to infer the adjacency
matrix A of the recruitment-induced graph and the distribu-
tion parameter θ. Given A, the maximum likelihood estima-
tor (MLE) for θ is

θ̂ = argmaxθ∈Θ L(t|A, θ) Pr(A, θ).

Similarly, given the true parameter θ, the MLE for the adja-
cency matrix A is given by

Â = argmaxA is compatible L(t|A, θ) Pr(A, θ).

In practice, both the parameter θ and the true recruitment-
induced subgraph GS are unknown and need estimation.
However, we can alternately estimate A and θ. This is what
RENDER (presented in Algorithm 1) does. Each iteration is
divided into two steps: A-step and θ-step.

Estimation of A using simulated annealing The A-step
of RENDER solves

max
A is compatible

L(t|A, θ̂ι) Pr(A, θ̂ι);

equivalently, it suffices to solve

max
A is compatible

(l(t|A, θ̂ι) + log Pr(A, θ̂ι)).

We employ a simulated-annealing-based method to estimate
the adjacency matrix A (presented in Algorithm 2). Let the
energy function be

Λγ(A; t, θ̂ι) � exp
[
−
(
l(t|A, θ̂ι) + log Pr(A, θ̂ι)

)
/γ

]
,

where γ is the temperature. We specify a cooling schedule,
which is a sequence of positive numbers {γj}j≥1 that satisfy
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limj→∞ γj = 0, where γj is the temperature in the j-th it-
eration. Note that the j-th iteration of the simulated anneal-
ing procedure has a compatible adjacency matrix A(j) as
its state. Algorithm 3 specifies which state (compatible ad-

Algorithm 2 Simulated-annealing-based optimization
Input: the number of iterations, jmax; the cooling sched-
ule {γj}j≥1; initial compatible adjacency matrix A(1); esti-
mated parameter θ̂ι.
Output: the estimated adjacency matrix Âι

for j = 1 to jmax do
Use Algorithm 3 to propose a compatible adjacency

matrix Ã(j+ 1) based on A(j).

ψ ← min

{
1,

Λγj (Ã(j+1);t,θ̂ι)

Λγj (A(j);t,θ̂ι)
· Pr(A(j)|Ã(j+1))

Pr(Ã(j+1)|A(j))

}
.

A(j+ 1)←
{
Ã(j+ 1) with probability ψ;

A(j) with probability 1− ψ.
end for
Âι ← A(jmax + 1).

jacency matrix) the algorithm should transition into in the
next iteration. Concretely, in each iteration of Algorithm 2,
it randomly proposes an edge that connects vertices i and j.
If the edge does not appear in A(j) and it still conforms to
the degree constraint if we add the edge, then we simply add
it to Ã(j + 1). In contrast, if the edge appears in A(j) and
it still conforms to the subgraph constraint if we remove the
edge, then we simply remove it from Ã(j + 1). If neither
condition is satisfied, the algorithm tries again with a new
proposal. We prove in (Chen, Crawford, and Karbasi 2015)
that the space of compatible adjacency matrices is connected
by the proposal method.

The proposed compatible adjacency matrix Ã(j + 1) is
accepted as the state for the next iteration with probability
ψ, where ψ equals

min

{
1,

Λγj(Ã(j+ 1); t, θ̂ι)

Λγj(A(j); t, θ̂ι)
· Pr(A(j)|Ã(j+ 1))

Pr(Ã(j+ 1)|A(j))

}
;

otherwise, the matrix A(j) remains the state for the next iter-

ation. The term
Λγj (Ã(j+1);t,θ̂ι)

Λγj (A(j);t,θ̂ι)
is called the likelihood ratio

and the term Pr(A(j)|Ã(j+1))

Pr(Ã(j+1)|A(j))
is called the proposal ratio. To

implement Algorithm 2, we have to compute the likelihood
ratio and the proposal ratio efficiently. In fact, they can be
evaluated efficiently in a recursive manner.
Theorem 2. (Proof in (Chen, Crawford, and Karbasi

2015)). The proposal ratio Pr(A(j)|Ã(j+1))

Pr(Ã(j+1)|A(j))
is given by

Add(A(j)) + Remove(A(j))

Add(Ã(j+ 1)) + Remove(Ã(j+ 1))
,

where Add(A) =
∑

1≤i<j≤n 1{Aij = 0,
∑n

k=1 Aik <

di,
∑n

k=1 Ajk < dj}, and Remove(A) =∑
1≤i<j≤n 1{Aij = 1 and A

(ij)
R = 0}. Here, we let

A
(ij)
R denote the (i, j)-entry of the matrix AR.

Algorithm 3 Proposal of compatible adjacency matrix
Input: the compatible adjacency matrix A(j) in the j-th it-
eration.
Output: a compatible adjacency matrix Ã(j+1), which will
be a candidate for the state in the (j+ 1)-th iteration.
loop

i, j ← two distinct random integers in [1, n] ∩ N

if Aij(j) = 0 and
∑n

k=1 Aik(j) < di and∑n
k=1 Ajk(j) < dj then

Ã+(j+ 1)← A(j)

Ã+
ij(j+ 1)← 1 and Ã+

ji(j+ 1)← 1

Ã(j+ 1)← Ã+(j+ 1) and exit loop
else

if Aij(j) = 1 and A
(ij)
R = 0 (A(ij)

R is the (i, j)-
entry of the matrix AR) then

Ã−(j+ 1)← A(j)

Ã−ij(j+ 1)← 0 and Ã−ji(j+ 1)← 0

Ã(j+ 1)← Ã−(j+ 1) and exit loop
end if

end if
end loop

return Ã(j+ 1)

The same way, we can find the likelihood ratio in a recur-
sive manner.
Theorem 3. (Proof in (Chen, Crawford, and Karbasi
2015)). If we view β in Theorem 1 as a function of the adja-
cency matrix A, denoted by β(A), then the recurrence rela-
tion between β(Ã(j+ 1)) and β(A(j)) is as follows:

(eβ(Ã(j+1)) − eβ(A(j)))j =

± (Bbj1{a < j} −Baj1{b < j}) . (1)

Here, we assign the minus sign “−” in “±” if Ã(j + 1) =

Ã+(j + 1), and assign the plus sign “+” in “±” if Ã(j +

1) = Ã−(j + 1). By the same convention, the likelihood
ratio Λγj

(Ã(j+ 1)|t, θ̂ι)/Λγj
(A(j)|t, θ̂ι) is given by

exp

{
−γ−1

j

[
− log

Pr(Ã(j+ 1))

Pr(A(j))
+m′

(
β(Ã(j+ 1))

−β(A(j)))±
n∑

j=1

(Dbj1{a < j} −Daj1{b < j})
⎤
⎦
⎫⎬
⎭ ,

Estimation of distribution parameter In a θ-step in Al-
gorithm 1, we have to solve the optimization problem
θ̂ι+1 ← argmaxθ∈Θ L(θ|Âι, t) Pr(Âι, θ). If the parame-
ter space Θ is a subset of the p-dimensional Euclidean space
R

p, this problem can be solved using off-the-shelf solvers,
e.g., FMINSEARCH in MATLAB.

Experiments

We evaluated the proposed method in two aspects, the re-
construction performance of the recruitment-induced sub-
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Figure 1: Example reconstruction procedure. Clockwise
from top left: the true recruitment-induced subgraph GS ,
the observed recruitment graph GR, the estimated network
with recruitments as blue arrows and dashed lines as inferred
edges, and the estimated recruitment-induced subgraph ĜS .

graph and the parameter estimation of the edgewise inter-
recruitment time model. Let A be the adjacency matrix of
the true recruitment-induced subgraph GS and Â be the
estimate. We define the true and false positive rates (TPR
and FPR) as TPR(Â,A) =

∑
i<j 1{Âij = 1 and Aij =

1}/(n2) and FPR(Â,A) =
∑

i<j 1{Âij = 1 and Aij =

0}/(n2). Fig. 1 illustrates an example of the reconstruction
procedure. We simulated a RDS process over the Project
90 graph (Woodhouse et al. 1994) with power-law edgewise
inter-recruitment time distribution, whose shape parameter
α = 2 and scale parameter xmin = 0.5. Fifty subjects are re-
cruited in this process. We show clockwise from top left: the
true recruitment-induced subgraph GS , the observed recruit-
ment graph GR, the estimated network with recruitments as
blue arrows and dashed lines as inferred edges, and the es-
timated recruitment-induced subgraph ĜS . The TPR equals
0.769 and the FPR equals 0.106. The estimated parameter
α̂ = 1.95 and x̂min = 0.49.

Reconstruction Performance

Impact of distribution parameter We simulated 50 RDS
over the Project 90 graph with inter-recruitment time distri-
bution Gamma(α, α) (parametrized by the shape and scale)
for each α = 0.01, 0.1, 1, 10, and 100. Thus a total num-
ber of 250 RDS processes are simulated and the mean inter-
recruitment time is fixed to be 1. The reconstruction per-
formance is illustrated in Fig. 2. Each point on the receiver
operating characteristic (ROC) plane represents a recon-
struction accuracy performance of a simulated RDS process.

Figure 2: True and false positive rates of the reconstruc-
tion results for Gamma(α, α) datasets. Each point corre-
sponds to the reconstruction result of one dataset. The differ-
ent shapes of the points indicate different shape parameters.

Figure 3: Difference between true and false positive rates
(green and red boxplots, respectively) under the exponential
model and the true Gamma model (the vertical axis) with the
true shape parameter α (the horizontal axis).

Points with the same marker have the same inter-recruitment
time distribution parameter. From the figure, we can observe
that there is no significant sign of separation of points with
different inter-recruitment time distribution parameters. Re-
construction accuracy is robust to the distribution parameter.

Impact of distribution model We simulated 50 RDS pro-
cess over the Project 90 graph with inter-recruitment time
distribution Gamma(0.5, 0.5). The recruitment-induced sub-
graph is reconstructed via the model of the true inter-
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Figure 4: Distribution of bias in the estimated shape param-
eter α̂ given the estimated adjacency matrix (red boxes) and
the true adjacency matrix (green boxes). The horizontal axis
represents the values of the true shape parameter α. Whisker
lengths are 1.5 times the inter-quartile range.

recruitment distribution Gamma(0.5, 0.5) and the exponen-
tial distribution Exp(1), respectively. The TPR and FPR of
each dataset are presented in Fig. 3. The TPR is always
higher than the FPR, which reaffirms the effectiveness of
our proposed reconstruction method. For each dataset, the
TPR and FPR under the true and the exponential models are
very close to each other. We observe that there is no signif-
icant reconstruction skewness incurred by mis-specification
of the inter-recruitment time distribution model.

Parameter Estimation

We simulated 200 RDS processes over the Project 90
graph with edgewise inter-recruitment time distribution
Gamma(α, α) (parametrized by the shape and scale param-
eters) for each α = 0.5, 0.75, 1, 1.25, and 1.5. We used the
method in the “Estimation of distribution parameter” sec-
tion. We assess the bias of the estimated shape parameter α̂,
which is given by α̂−α. Fig. 4 shows the distribution of the
bias using Tukey boxplots. In Fig. 4, the red boxes depict
the distribution of the biases of the estimated shape param-
eters inferred through the estimated adjacency matrix, while
the green boxes illustrate the distribution of those inferred
given the true adjacency matrix. The horizontal axis shows
the value of the true shape parameter.

With respect to the red boxes (those based on the esti-
mated adjacency matrices), The middle line of each box is
very close to zero and thus the estimation is highly accu-
rate. The interquartile range (IQR) , which measures the de-
viation of the biases, declines as the shape parameter de-
creases. Even for the box with largest deviation (i.e., the
box with α = 1.5), the IQR is approximately [−0.125, 0.02]

and 99.3% of the biases reside in the interval [−0.27, 0.25].
Compared with the parameter estimation via the true adja-
cency matrix, this estimator based on the estimated adja-
cency matrix is biased to some degree. In Fig. 4, we can
observe that it underestimates α.

Then consider the green boxes (those based on the true
adjacency matrix). Similar to those based on the estimated
adjacency matrix, the deviation of this estimator declines as
the value of the shape parameter α decreases. The middle
line of each box is noted to coincide perfectly with zero bias
line, which suggests that this estimator is unbiased given the
true adjacency matrix.

Experiments on Real Data

We also apply RENDER to data from an RDS study of n =
813 drug users in St. Petersburg, Russian Federation. We
use RENDER to infer the underlying social network structure
of the drug users in this study. Since it could be confusing
to visualize the whole inferred network, we only show the
inferred subgraph of the largest community of the network,
as presented in Fig. 5. The blue arrows represent the edges
in the recruitment subgraph that indicates the recruiter and
recruitee. Gray dashed edges are inferred from the data.

Conclusion

In this paper, we precisely formulated the dynamics of RDS
as a continuous-time diffusion process over the underlying
graph. We derived the likelihood for the recruitment time
series under an arbitrarily recruitment time distribution. As
a result, we develop an efficient stochastic optimization al-
gorithm, RENDER, that identifies the optimum network that
best explains the collected data. We then supported the per-
formance of RENDER through an exhaustive set of experi-
ments on both synthetic and real data.
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Figure 5: Illustration of the largest community of the in-
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dataset. The blue arrows represent the edges in the recruit-
ment subgraph that indicates the recruiter and recruitee.
Gray dashed edges are inferred from the data.
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