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Abstract—The problem of neural network association is to
retrieve a previously memorized pattern from its noisy version
using a network of neurons. An ideal neural network should
include three components simultaneously: a learning algorithm,
a large pattern retrieval capacity and resilience against noise.
Prior works in this area usually improve one or two aspects at
the cost of the third.

Our work takes a step forward in closing this gap. More
specifically, we show that by forcing natural constraints on the
set of learning patterns, we can drastically improve the retrieval
capacity of our neural network. Moreover, we devise a learning
algorithm whose role is to learn those patterns satisfying the
above mentioned constraints. Finally we show that our neural
network can cope with a fair amount of noise.

I. INTRODUCTION

Neural networks are famous for their ability to learn and

reliably perform a required task. An important example is the

case of (associative) memory where we are asked to memorize

(learn) a set of given patterns. Later, corrupted versions of the

memorized patterns will be shown to us and we have to return

the correct memorized patterns. In essence, this problem is

very similar to the one faced in communication systems where

the goal is to reliably transmit and efficiently decode a set of

patterns (so called codewords) over a noisy channel.

As one would naturally expect, reliability is certainly a

very important issue both in the neural associative memories

and in communication systems. Indeed, the last three decades

witnessed many reliable artificial associative neural networks.

See for instance [5], [14], [6], [9], [13], [4].

However, despite common techniques and methods de-

ployed in both fields (e.g., graphical models, iterative algo-

rithms, etc), there has been a quantitative difference in terms of

another important criterion: the efficiency. In communication

systems, by using modern coding techniques it has become

clear that the number of reliably transmitted codewords over

a noisy channel can be made exponential in n, the length

of the codewords. However, using current neural networks of

size n to memorize a set of randomly chosen patterns, the

maximum number of patterns that can be reliably memorized

scales linearly in n [8], [14].

In search for the reasons beyond the inefficiency of the

storage capacity of neural networks, we found out that a large

body of past work (e.g., [5], [14], [6], [9]) followed a common

assumption that a neural network should be able to memorize

any subset of patterns drawn randomly from the set of all

possible vectors of length n. Although this assumption gives

the network a sense of generality, it reduces its storage capacity

to a great extent.

An interesting question which arises in this context is

whether one can increase the storage capacity of neural

networks beyond the current linear scaling and achieve results

similar to coding theory. To this end, Kumar et al. [7]

suggested a new formulation of the problem where only a

suitable set of patterns was considered for storing. This way

they could show that the performance of neural networks in

terms of storage capacity increases significantly. Following

the same philosophy, we will focus on memorizing a random

subset of patterns of length n such that the dimension of the

training set is k < n. In other words, we are interested in

memorizing a set of patterns that have a certain degree of

structure and redundancy. We exploit this structure both to

increase the number of patterns that can be memorized (from

linear to exponential) and to increase the number of errors that

can be corrected when the network is faced with corrupted

inputs.

The success of [7] is mainly due to forming a bipartite

network/graph (as opposed to a complete graph) whose role

is to enforce the suitable constraints on the patterns, very

similar to the role played by Tanner graphs in coding. More

specifically, one layer is used to feed the patterns to the

network (so called variable nodes in coding) and the other

takes into account the inherent structure of the input patterns

(so called check nodes in coding). A natural way to enforce

structures on inputs is to assume that the connectivity matrix

of the bipartite graph is orthogonal to all of the input patterns.

However, the authors in [7] heavily rely on the fact that the

bipartite graph is fully known and given, and satisfies some

sparsity and expansion properties. The expansion assumption

is made to ensure that the resulting set of patterns are resilient

against fair amount of noise. Unfortunately, no algorithm for

finding such a bipartite graph was proposed.

Our main contribution in this paper is to relax the above as-

sumptions while achieving better error correction performance.

More specifically, we first propose an iterative algorithm that

can find a sparse bipartite graph that satisfies the desired set of

constraints. We also provide an upper bound on the block error

rate of the method that deploys this learning strategy. We then

proceed to devise a multi-layer network whose performance

in terms of error tolerance improves significantly upon [7] and

no longer needs to be an expander.

II. PROBLEM FORMULATION

In contrast to the mainstream work in neural associative

memories, we focus on non-binary neurons, i.e., neurons that

can assume a finite set of integer values S = {0, 1, . . . , S−1}
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for their states (where S > 2). A natural way to interpret the

multi-level states is to think of the short-term (normalized)

firing rate of a neuron as its output. Neurons can only perform

simple operations. In particular, we restrict the operations at

each neuron to a linear summation over the inputs, and a

possibly non-linear thresholding operation. In particular, a

neuron x updates its state based on the states of its neighbors

{si}ni=1 as follows:

1) It computes the weighted sum h =
∑n

i=1 wisi, where

wi denotes the weight of the input link from si.
2) It updates its state as x = f(h), where f : R → S

is a possibly non-linear function from the field of real

numbers R to S .

Neural associative memory aims to memorize C patterns of

length n by determining the weighted connectivity matrix

of the neural network (learning phase) such that the given

patterns are stable states of the network. Furthermore, the

network should be able to tolerate a fair amount of noise so

that it can return the correct memorized pattern in response

to a corrupted query (recall phase). Among the networks with

these two abilities, the one with largest C is the most desirable.
We first focus on learning the connectivity matrix of a neural

graph which memorizes a set of patterns having some inherent

redundancy. More specifically, we assume to have C vectors

of length n with non-negative integer entries, where these

patterns form a subspace of dimension k < n. We would

like to memorize these patterns by finding a set of non-zero

vectors w1, . . . , wm ∈ R
n that are orthogonal to the set of

given patterns. Furthermore, we are interested in rather sparse

vectors. Putting the training patterns in a matrix XC×n and

focusing on one such vector w, we can formulate the problem

as:

min ‖X · w‖2 (1a)

subject to

‖w‖0 ≤ q and ‖w‖22 ≥ ε (1b)

where q ∈ N determines the degree of sparsity and ε ∈ R
+

prevents the all-zero solution. A solution to the above problem

yields a sparse bipartite graph which corresponds to the basis

vectors of the null space specified by the patterns in the

training set. It can therefore be described by Figure 1 with

a connectivity matrix W ∈ R
m×n such that XWT = 0.

In the recall phase, the neural network is fed with noisy in-

puts. A possibly noisy version of an input pattern is initialized

as the states of the pattern neurons x1, x2, . . . , xn. Here, we

assume that the noise is integer valued and additive (modulu

S). In formula, we have y = W (xμ + z) = Wz where z is

the noise added to pattern xμ. Hence, we are looking for an

algorithm that can use this information to provably eliminate

the effect of noise and return the correct pattern.

Remark 1. A solution in the learning/recall phase is accept-
able only if it can be found by simple operations at neurons.

Before presenting our solution, we briefly overview the

relation between the previous works and the one presented

in this paper.
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Fig. 1. A bipartite graph that represents the constraints on the training set.

A. Related Works

Designing artificial associative memories has been an active

topic of research for the past three decades. Inspired by

the Hebbian learning rule, Hopfield in his seminal work [5]

introduced the Hopfield network: an auto-associative neural

mechanism of size n with binary state neurons in which

patterns are assumed to be binary vectors of length n. The

capacity of a Hopfield network under vanishing block error

probability was later shown to be O(n/ log(n)) in [8].

Due to the low capacity of Hopfield networks, extension

of associative memories to non-binary neural models has also

been explored in the past. For instance, in [6] the authors

investigated a multi-state complex-valued neural associative

memories for which the estimated capacity is C < 0.15n.

Under the same model but using a different learning method,

Muezzinoglu et al. [9] showed that the capacity can be

increased to C = n. However the complexity of the weight

computation mechanism is prohibitive.

A line of recent work has made considerable efforts to

exploit the inherent structure of the patterns in order to

increase both capacity and error correction capabilities. Such

methods either make use of higher order correlations of

patterns or focus merely on those patterns that have some

sort of redundancy. As a result, they differ from previous

methods for which every possible random set of patterns was

considered. Pioneering this prospect, Berrou and Gripon [4]

achieved considerable improvements in the pattern retrieval

capacity of Hopfield networks, by utilizing Walsh-Hadamard

sequences. Using low correlation sequences has also been

considered in [13], which results in increasing the storage

capacity of Hopfield networks to n without requiring any

separate decoding stage.

In contrast to the pairwise correlation of the Hopfield model

[5], Peretto et al. [11] deployed higher order neural models:

the state of the neurons not only depends on the state of their

neighbors, but also on the correlation among them. Under this

model, they showed that the storage capacity of a higher-order

Hopfield network can be improved to C = O(np−2), where

p is the degree of correlation considered. The main drawback

of this model was again the huge computational complexity

required in the learning phase. To address this difficulty while

being able to capture higher-order correlations, a bipartite
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graph inspired from iterative coding theory was introduced in

[7]. Under the assumptions that the bipartite graph is known,

sparse, and expander, the proposed algorithm increased the

pattern retrieval capacity to C = O(an), for some a > 1.

The main drawbacks in the proposed approach is the lack of

a learning algorithm as well as the assumption that the weight

matrix should be an expander. The sparsity criterion on the

other hand, as it was noted by the authors, is necessary in the

recall phase and biologically more meaningful.

In this paper, we focus on solving the above two problems

in [7]. We start by proposing an iterative learning algorithm

that identifies a sparse weight matrix W . The weight matrix

W should satisfy a set of linear constraints XWT = 0. We

then propose a novel network architecture which eliminates

the need for the expansion criteria while achieving better

performance than the error correction algorithm proposed in

[7].

To learn a sparse neural graph, we follow ideas borrowed

from iterative neural learning [15], [10] and compressive

sensing [2], [3]. Constructing a factor-graph model for neural

associative memory has been also addressed in [1] where

a message-passing algorithm is proposed to memorize any

set of random patterns. However, in this paper we focus on

memorizing patterns belonging to subspaces with sparsity in

mind as well. The difference would again be apparent in the

pattern retrieval capacity (linear vs. exponential in network

size).

III. LEARNING ALGORITHM

We are interested in an iterative algorithm that is simple

enough to be implemented by a network of neurons. Therefore,

we first relax (1) as follows:

min ‖X · w‖2 − λ(‖w‖22 − ε) + γ(g(w)− q′). (2)

In the above problem, we have approximated the constraint

‖w‖0 ≤ q with g(w) ≤ q′ since ‖.‖0 is not a well-behaved

function. The function g(w) is chosen such that it favors

sparsity. For instance one can pick g(w) to be ‖.‖1, which

leads to �1-norm minimizations. In this paper, we consider

the function

g(w) =
n∑

i=1

tanh(σw2
i )

where σ is chosen appropriately. By calculating the derivative

of the objective function and primal-dual optimization tech-

niques we obtain the following iterative algorithm for (2) (the

details are tedious and left to our technical report [12]):

y(t) =
X · w(t)
‖X‖2 (3a)

w(t+ 1) = (1 + 2λt)w(t)− 2αt
X�y(t)
‖X‖2 − γt∇g(w) (3b)

λt+1 =
[
λt + δ(ε− ‖w‖22)

]
(3c)

γt+1 = [γt + δ(g(w)− q′)] (3d)

Algorithm 1 Iterative Learning

Input: pattern matrix X , stopping point p.

Output: w
while ‖y(t)‖max > p do

Compute y(t) = X·w(t)
‖X‖2 .

Update w(t+ 1) = η
(
(1 + 2λt)w(t)− 2αt

X�y(t)
‖X‖2

)
θt

.

Update λt+1 =
[
λt + γ(ε− ‖w‖22)

]
.

t← t+ 1.

end while

where t denotes the iteration number, X� is the transpose

of matrix X , δ and αt are small step sizes and [·]+ denotes

max(·, 0).
For our choice of g(w), the ith entry of the function f(w) =

∇g(w), denoted by fi(w) reduces to 2σwi(1− tanh(σw2
i )

2).
For very small values of wi, fi(w) 	 wi and for large values

of wi, fi(w) 	 0. Therefore, by looking at (3b) we see that

the last term is pushing small values in w(t+1) towards zero

while leaving the larger values intact. Therefore, we remove

the last term completely and enforce small entries to zero in

each update which in turn enforces sparsity. The final iterative

learning procedure is shown in Algorithm 1.

Here, θt is a positive threshold at iteration t and η(.)θt is

the point-wise soft-thresholding function given below:

η(u)θ =

{
u if |u| > θ,
0 otherwise.

(4)

Remark 2. the above choice of soft-theresholding function is
very similar to the one selected by Donoho et al. in [3] in
order to recover a sparse signal from a set of measurements.
The authors prove that their choice of soft-threshold function
results in optimal sparsity-undersampling trade-off.

The next theorem derives the necessary conditions on αt, λt

and θt such that Algorithm 1 converges to a sparse solution.

Theorem 1. If θt → 0 as t→∞ and if λt < amin/(amax −
amin), then there is a proper choice of αt in every iteration
t that ensures constant decrease in the objective function
‖X .w(t)‖max. Here amin = minμ ‖xμ‖2/‖X‖2 and amax =
maxμ ‖xμ‖2/‖X‖2. For λt = 0, i.e. ‖w(t)‖2 ≥ ε, picking
0 < αt < 1 ensures gradual convergence.

Sketch of the proof: Let E(t) = ‖y(t)‖max. We

would like to show that E(t + 1) < E(t) for all iterations

t. We can write w(t + 1) = w′(t) − χ(w′(t); θt) where

w′(t) = (1 + 2λt)w(t) − 2αt
X�y
‖X‖2 . We can then show that

E(t + 1) ≤ ‖X .w′(t)
‖X‖2 ‖max + θt. By expanding

X .w′(t)
‖X‖ we

will obtain E(t + 1) ≤ ‖Dt‖maxE(t) + θt where D(t) =

(1+2λt)IC×C −2αt
XXT

‖X‖22 . Hence we need θt → 0 as t→∞
and ensuring ‖Dt‖max < 1. The latter condition is satisfied if

λt ≤ amin/(amax−amin). For the detailed proof, we refer the

interested readers to our technical report [12].

It must be noted that the above algorithm gives one possible

solution to the learning problem (2), as there are multiple local

1066



���

���

���

���

���

�� ��

���

���

��

���

���

��

Fig. 2. A two-level error correcting neural network.

Algorithm 2 Error Correction

1: for t = 1→ tmax do
2: Forward iteration: Calculate the weighted input sum

hi =
∑n

j=1 Wijxj , for each neuron yi and set:

yi =

⎧⎨
⎩

1, hi < 0
0, hi = 0
−1, otherwise

.

3: Backward iteration: Each neuron xj computes

gj =

∑m
i=1 Wijyi∑m
i=1 |Wij | .

4: Update the state of each pattern neuron j according to

xj = xj + sgn(gj) only if |gj | > ϕ.

5: t← t+ 1
6: end for

minimums for this problem corresponding to different null-

bases of the subspace defined by the patterns in the training set.

Any of these vectors are acceptable for the proposed algorithm.

IV. MULTI-LEVEL NETWORK ARCHITECTURE

In order to have error correction capabilities we propose a

new network structure (see Figure 2). To make the description

clear and simple we only concentrate on a two-level neural

network. However, the generalization of this idea is trivial and

left to the reader.

The idea behind this new architecture is that we divide the

input pattern of size n into L sub-patterns of length n/L.

Now we feed each sub-pattern to a neural network which

enforces m constraints1 on the sub-pattern in order to correct

the input errors. Such model might be specially useful in cases

where the input is modular, similar to the case of memorizing

different words of a sentence and enforcing global grammatical

constraints on the sentence as a whole, or the case where local

sub-patterns have few dominant principle components.

The local networks in the first level and the global network

in the second level use Algorithm 2, which is a variant of the

”bit-flipping” method proposed in [7], to correct the errors.

Note that if the states of the pattern neurons xi correspond to

a pattern from X (i.e., the noise-free case), then for all i =
1, . . . ,m we have yi = 0. The quantity gj can be interpreted

1The number of constraints for different networks can vary. For simplicity
of notifications we assume equal sizes.

as feedback to pattern neuron xj from the constraint neurons.

Hence, the sign of gj provides an indication of the sign of the

noise that affects xj , and |gj | indicates the confidence level in

the decision regarding the sign of the noise.

Theorem 2. Let d̄ and dmin be the average and minimum
degree of pattern neurons, respectively. Then, Algorithm 2 can
correct a single error in the input pattern with probability at

least 1−
(

d̄
m

)dmin

if ϕ→ 1.

For the proof, we refer the interested readers to our technical

report [12].
Given that each local network is able to correct one pattern

with high probability, L such networks can correct L input

errors if they are separated such that only one error appears

in the input of each local network. Otherwise, there would

be a probability that the network could not handle the errors.

In that case, we feed the overall pattern of length n to the

second layer with the connectivity matrix Wg , which enforces

mg global constraints. And since the probability of correcting

two erroneous nodes increases with the input size, we expect

to have a better error correction probability in the second layer.

Therefore, using this simple scheme we expect to gain a lot in

correcting errors in the patterns. In the next section, we provide

simulation results which confirm our expectations and show

that the block error rate can be improved by a factor of 100
in some cases.

Remark 3. The number of constraints for the second layer af-
fects the gain one obtains in the error performance. Intuitively,
if the number of global constraints is large, we are enforcing
more constraints so we expect a better error performance. We
can think of determining the number even adaptively, i.e. if
the error performance that we are getting is unacceptable, we
can look deeper in patterns to identify their internal structure
by searching for more constraints. This would be a subject of
our future research.

V. PATTERN RETRIEVAL CAPACITY

The following theorem shows that the proposed neural

architecture is capable of memorizing an exponential number

of patterns in n.

Theorem 3. Let X be the C×n matrix, formed by C vectors
of length n with non-negative integer entries between 0 and
S − 1. Furthermore, let kg = rn for some 0 < r < 1. Then,
there exists a data set X with C = arn, a > 1, and rank(X ) =
kg < n, such that they can be memorized by the proposed
multi-level neural network shown in figure 2.

The proof of the theorem can be found in the technical

report [12].

VI. SIMULATION RESULTS

We have simulated the proposed learning algorithm in the

multi-level architecture to investigate the block error rate of

the suggested approach and the gain we obtain in error rates

by adding a second level. We constructed 4 local networks,

each with n/4 pattern and m constraint nodes.
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A. Learning Phase

We generated a sample data set of C = 10000 patterns of

length n where each block of n/4 belonged to a subspace of

dimension k < n/4. Note that C can be an exponential number

in n. However, we selected C = 10000 as an example to show

the performance of the algorithm because even for small values

of k, and exponential number in k will become too large to

handle numerically. The result of the learning algorithm is

four different local connectivity matrices W1, . . . ,W4 as well

as a global weight matrix Wg . The number of local constraints

was m = n/4 − k and the number of global constraints was

mg = n − kg , where kg is dimension of the subspace for

overall pattern.

Table VI-A shows the average number of iterations executed

before convergence is reached for different local and global

constraints. It also gives the average sparsity ratio for the

columns of weight matrices. The sparsity ratio is defined as

ρ = κ/n, where κ is the number of non-zero elements.

TABLE I
AVERAGE NUMBER OF CONVERGENCE ITERATIONS AND SPARSITY IN THE

LOCAL AND GLOBAL NETWORKS FOR n = 400

Sparsity Ratio Convergence Steps
kg = 100 kg = 200 kg = 100 kg = 200

Local 0.28 0.32 4808 5064
Global 0.22 0.26 14426 33206

B. Recall Phase

For the recall phase, in each trial we pick a pattern randomly

from the training set, corrupt a given number of its symbols

with ±1 noise and use the suggested algorithm to correct the

errors. As mentioned earlier, the errors are corrected first at the

local and the at the global level. When finished, we compare

the output of the first and the second level with the original

(uncorrupted) pattern x. An error is declared if the output does

not match at each stage.

Figure 3 illustrates the pattern error rates n = 400 with two

different values of kg = 100 and kg = 200. The results are

also compared to that of the bit-flipping algorithm in [7] to

show the improved performance of the proposed algorithm. As

one can see, having a larger number of constraints at the global

level, i.e. having a smaller kg , will result in better pattern error

rates at the end of the second stage.

Table VI-B shows the gain we obtain by adding an addi-

tional second level to the network architecture. The gain is

calculated as the ratio between the pattern error rate at the

output of the first and the second level.

TABLE II
GAIN IN PATTERN ERROR RATE (PER) FOR DIFFERENT VALUES OF

n = 400 AND INITIAL NUMBER OF ERRORS

Number of initial errors Gain for kg = 100 Gain for kg = 200
2 10.2 2.79
3 6.22 2.17
4 4.58 1.88
5 3.55 1.68

Fig. 3. Pattern error rate against the initial number of erroneous nodes
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