Title: Reproducible Bandits

Authors: Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, Grigoris Velegkas

Abstract

In this paper, we introduce the notion of reproducible policies in the context of stochastic bandits, one of the canonical problems in interactive learning. A policy in the bandit environment is called reproducible if it pulls, with high probability, the \emph{exact} same sequence of arms in two different and independent executions (i.e., under independent reward realizations). We show that not only do reproducible policies exist, but also they achieve almost the same optimal (non-reproducible) regret bounds in terms of the time horizon. More specifically, in the stochastic multi-armed bandits setting, we develop a policy with an optimal problem-dependent regret bound whose dependence on the reproducibility parameter is also optimal. Similarly, for stochastic linear bandits (with finitely and infinitely many arms) we develop reproducible policies that achieve the best-known problem-independent regret bounds with an optimal dependency on the reproducibility parameter. Our results show that even though randomization is crucial for the exploration-exploitation trade-off, an optimal balance can still be achieved while pulling the exact same arms in two different rounds of executions.

Full Text: [PDF]

Accessibility at Yale   Inference, Information, and Decision Group at Yale