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Abstract

Recent advances in associative memory design through structured pattern sets and
graph-based inference algorithms allow reliable learning and recall of exponential
numbers of patterns. Though these designs correct external errors in recall, they
assume neurons compute noiselessly, in contrast to highly variable neurons in
hippocampus and olfactory cortex. Here we consider associative memories with
noisy internal computations and analytically characterize performance. As long
as internal noise is less than a specified threshold, error probability in the recall
phase can be made exceedingly small. More surprisingly, we show internal noise
actually improves performance of the recall phase. Computational experiments
lend additional support to our theoretical analysis. This work suggests a functional
benefit to noisy neurons in biological neuronal networks.

1 Introduction

Hippocampus, olfactory cortex, and other brain regions are thought to operate as associative memo-
ries [1,2], having the ability to learn patterns from presented inputs, store a large number of patterns,
and retrieve them reliably in the face of noisy or corrupted queries [3–5]. Associative memory mod-
els are designed to have these properties.

Although such information storage and recall seemingly falls into the information-theoretic frame-
work, where an exponential number of messages can be communicated reliably with a linear number
of symbols, classical associative memory models could only store a linear number of patterns [4]. A
primary reason is classical models require memorizing a randomly chosen set of patterns. By enforc-
ing structure and redundancy in the possible set of memorizable patterns—like natural stimuli [6],
internal neural representations [7], and error-control codewords—advances in associative memory
design allow storage of an exponential number of patterns [8,9], just like in communication systems.

Information-theoretic and associative memory models of storage have been used to predict exper-
imentally measurable properties of synapses in the mammalian brain [10, 11]. But contrary to the
fact noise is present in computational operations of the brain [12, 13], associative memory models
with exponential capacities have assumed no internal noise in the computational nodes. The purpose
here is to model internal noise and study whether such associative memories still operate reliably.
Surprisingly, we find internal noise actually enhances recall performance, suggesting a functional
role for variability in the brain.

In particular we consider a multi-level, graph code-based, associative memory model [9] and find
that even if all components are noisy, the final error probability in recall can be made exceedingly
small. We characterize a threshold phenomenon and show how to optimize algorithm parameters
when knowing statistical properties of internal noise. Rather counterintuitively the performance
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of the memory model improves in the presence of internal neural noise, as observed previously as
stochastic resonance [13, 14]. There are mathematical connections to perturbed simplex algorithms
for linear programing [15], where internal noise pushes the algorithm out of local minima.

The benefit of internal noise has been noted previously in associative memory models with stochastic
update rules, cf. [16]. However, our framework differs from previous approaches in three key as-
pects. First, our memory model is different, which makes extension of previous analysis nontrivial.
Second, and perhaps most importantly, pattern retrieval capacity in previous approaches decreases
with internal noise, cf. [16, Fig. 6.1], in that increasing internal noise helps correct more external
errors, but also reduces the number of memorizable patterns. In our framework, internal noise does
not affect pattern retrieval capacity (up to a threshold) but improves recall performance. Finally, our
noise model has bounded rather than Gaussian noise, and so a suitable network may achieve perfect
recall despite internal noise.

Reliably storing information in memory systems constructed completely from unreliable compo-
nents is a classical problem in fault-tolerant computing [17–19], where models have used random
access architectures with sequential correcting networks. Although direct comparison is difficult
since notions of circuit complexity are different, our work also demonstrates that associative mem-
ory architectures constructed from unreliable components can store information reliably.

Building on the idea of structured pattern sets [20], our associative memory model [9] relies on
the fact all patterns to be learned lie in a low-dimensional subspace. Learning features of a low-
dimensional space is very similar to autoencoders [21] and has structural similarities to Deep Belief
Networks (DBNs), particularly Convolutional Neural Networks [22].

2 Associative Memory Model

Notation and basic structure: In our model, a neuron can assume an integer-valued state from
the set S = {0, . . . , S − 1}, interpreted as the short term firing rate of neurons. A neuron updates
its state based on the states of its neighbor {si}ni=1 as follows. It first computes a weighted sum
h =

∑n
i=1 wisi + ζ, where wi is the weight of the link from si and ζ is the internal noise, and then

applies nonlinear function f : R→ S to h.

An associative memory is represented by a weighted bipartite graph, G, with pattern neurons and
constraint neurons. Each pattern x = (x1, . . . , xn) is a vector of length n, where xi ∈ S, i =
1, . . . , n. Following [9], the focus is on recalling patterns with strong local correlation among
entries. Hence, we divide entries of each pattern x into L overlapping sub-patterns of lengths
n1, . . . , nL. Due to overlaps, a pattern neuron can be a member of multiple subpatterns, as in
Fig. 1a. The ith subpattern is denoted x(i) = (x

(i)
1 , . . . , x

(i)
ni ), and local correlations are assumed to

be in the form of subspaces, i.e. the subpatterns x(i) form a subspace of dimension ki < ni.

We capture the local correlations by learning a set of linear constraints over each subspace corre-
sponding to the dual vectors orthogonal to that subspace. More specifically, let {w(i)

1 , . . . , w
(i)
mi} be

a set of dual vectors orthogonal to all subpatterns x(i) of cluster i. Then:

y
(i)
j = (w

(i)
j )T · x(i) = 0, for all j ∈ {1, . . . ,mi} and for all i ∈ {1, . . . , L}. (1)

Eq. (1) can be rewritten as W (i) ·x(i) = 0 where W (i) = [w
(i)
1 |w

(i)
2 | . . . |w

(i)
mi ]

T is the matrix of dual
vectors. Now we use a bipartite graph with connectivity matrix determined by W (i) to represent the
subspace constraints learned from subpattern x(i); this graph is called cluster i. We developed an
efficient way of learning W (i) in [9], also used here. Briefly, in each iteration of learning:

1. Pick a pattern x at random from the dataset;

2. Adjust weight vectorsw(i)
j for j = {1, . . . ,mi} and i = {1, . . . , L} such that the projection

of x onto w(i)
j is reduced. Apply a sparsity penalty to favor sparse solutions.

This process repeats until all weights are orthogonal to the patterns in the dataset or the maximum
iteration limit is reached. The learning rule allows us to assume the weight matricesW (i) are known
and satisfy W (i) · x(i) = 0 for all patterns x in the dataset X , in this paper.
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(a) Bipartite graph G. (b) Contraction graph G̃.

Figure 1: The proposed neural associative memory with overlapping clusters.

For the forthcoming asymptotic analysis, we need to define a contracted graph G̃whose connectivity
matrix is denoted W̃ and has size L×n. This is a bipartite graph in which constraints in each cluster
are represented by a single neuron. Thus, if pattern neuron xj is connected to cluster i, W̃ij = 1;
otherwise W̃ij = 0. We also define the degree distribution from an edge perspective over G̃, using
λ̃(z) =

∑
j λ̃jz

j and ρ̃(z) =
∑
j ρ̃jz

j−1 where λ̃j (resp., ρ̃j) equals the fraction of edges that
connect to pattern (resp., cluster) nodes of degree j.

Noise model: There are two types of noise in our model: external errors and internal noise. As
mentioned earlier, a neural network should be able to retrieve memorized pattern x from its corrupted
version y due to external errors. We assume the external error is an additive vector of size n, denoted
by z satisfying y = x + z, whose entries assume values independently from {−1, 0,+1}1 with
corresponding probabilities p−1 = p+1 = ε/2 and p0 = 1− ε. The realization of the external error
on subpattern x(i) is denoted z(i). Note that the subspace assumption implies W · y = W · z and
W (i) · y(i) = W (i) · z(i) for all i. Neurons also suffer from internal noise. We consider a bounded
noise model, i.e. a random number uniformly distributed in the intervals [−υ, υ] and [−ν, ν] for the
pattern and constraint neurons, respectively (υ, ν < 1).

The goal of recall is to filter the external error z to obtain the desired pattern x as the true states of
the pattern neurons. When neurons compute noiselessly, this task may be achieved by exploiting the
fact the set of patterns x ∈ X to satisfy the set of constraints W (i) ·x(i) = 0. However, it is not clear
how to accomplish this objective when the neural computations are noisy. Rather surprisingly, we
show that eliminating external errors is not only possible in the presence of internal noise, but that
neural networks with moderate internal noise demonstrate better external noise resilience.

Recall algorithms: To efficiently deal with external errors, we use a combination of Alg. 1 and
Alg. 2. The role of Alg. 1 is to correct at least a single external error in each cluster. Without
overlaps between clusters, the error resilience of the network is limited. Alg. 2 exploits the overlaps:
it helps clusters with external errors recover their correct states by using the reliable information
from clusters that do not have external errors. The error resilience of the resulting combination
thereby drastically improves. Now we describe the details of Alg. 1 and Alg. 2 more precisely.

Alg. 1 performs a series of forward and backward iterations in each cluster G(l) to remove (at
least) one external error from its input domain. At each iteration, the pattern neurons locally decide
whether to update their current state: if the amount of feedback received by a pattern neuron exceeds
a threshold, the neuron updates its state, and otherwise remains as is. With abuse of notation, let
us denote messages transmitted by pattern node i and constraint node j at round t by xi(t) and
yj(t), respectively. In round 0, pattern nodes are initialized by a pattern x̂, sampled from dataset X ,
perturbed by external errors z, i.e., x(0) = x̂+ z. Thus, for cluster ` we have x(`)(0) = x̂(`) + z(`),
where z(`) is the realization of errors on subpattern x(`).

In round t, the pattern and constraint neurons update their states using feedback from neighbors.
However since neural computations are faulty, decisions made by neurons may not be reliable. To
minimize effects of internal noise, we use the following update rule for pattern node i in cluster `:

x
(`)
i (t+ 1) =

{
x
(`)
i (t)− sign(g

(`)
i (t)), if |g(`)i (t)| ≥ ϕ

x
(`)
i (t), otherwise,

(2)

1Note that the proposed algorithms also work with larger noise values, i.e. from a set {−a, . . . , a} for some
a ∈ N, see [23]; the ±1 noise model is presented here for simplicity.
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Algorithm 1 Intra-Module Error Correction

Input: Training set X , thresholds ϕ,ψ, iteration tmax

Output: x(`)1 , x
(`)
2 , . . . , x

(`)
n`

1: for t = 1→ tmax do
2: Forward iteration: Calculate the input h(`)i =∑n`

j=1W
(`)
ij x

(`)
j + vi, for each neuron y

(`)
i and

set y(`)i = f(h
(`)
i , ψ).

3: Backward iteration: Each neuron x(`)j computes

g
(`)
j =

∑m`
i=1 sign(W (`)

ij )y
(`)
i∑m`

i=1 sign(|W (`)
ij |)

+ ui.

4: Update the state of each pattern neuron j accord-
ing to x(`)j = x

(`)
j − sign(g

(`)
j ) only if |g(`)j | > ϕ.

5: end for

Algorithm 2 Sequential Peeling Algorithm

Input: G̃,G(1), G(2), . . . , G(L).
Output: x1, x2, . . . , xn

1: while there is an unsatisfied v(`) do
2: for ` = 1→ L do
3: If v(`) is unsatisfied, apply Alg. 1 to

cluster G(l).
4: If v(`) remained unsatisfied, revert

the state of pattern neurons con-
nected to v(`) to their initial state.
Otherwise, keep their current states.

5: end for
6: end while
7: Declare x1, x2, . . . , xn if all v(`)’s are

satisfied. Otherwise, declare failure.

where ϕ is the update threshold and g(`)i (t) =
(
(sign(W (`))> · y(`)(t)

)
i
/di + ui.2 Here, di is the

degree of pattern node i, y(`)(t) = [y
(`)
1 (t), . . . , y

(`)
m`(t)] is the vector of messages transmitted by

the constraint neurons in cluster `, and ui is the random noise affecting pattern node i. Basically,
the term g

(`)
i (t) reflects the (average) belief of constraint nodes connected to pattern neuron i about

its correct value. If g(`)i (t) is larger than a specified threshold ϕ it means most of the connected
constraints suggest the current state x(`)i (t) is not correct, hence, a change should be made. Note
this average belief is diluted by the internal noise of neuron i. As mentioned earlier, ui is uniformly
distributed in the interval [−υ, υ], for some υ < 1. On the constraint side, the update rule is:

y
(`)
i (t) = f(h

(`)
i (t), ψ) =


+1, if h(`)i (t) ≥ ψ
0, if − ψ ≤ h(`)i (t) ≤ ψ
−1, otherwise,

(3)

where ψ is the update threshold and h
(`)
i (t) =

(
W (`) · x(`)(t)

)
i

+ vi. Here, x(`)(t) =

[x
(`)
1 (t), . . . , x

(`)
n` (t)] is the vector of messages transmitted by the pattern neurons and vi is the ran-

dom noise affecting node i. As before, we consider a bounded noise model for vi, i.e., it is uniformly
distributed in the interval [−ν, ν] for some ν < 1.3

The error correction ability of Alg. 1 is fairly limited, as determined analytically and through sim-
ulations [23]. In essence, Alg. 1 can correct one external error with high probability, but degrades
terribly against two or more external errors. Working independently, clusters cannot correct more
than a few external errors, but their combined performance is much better. As clusters overlap, they
help each other in resolving external errors: a cluster whose pattern neurons are in their correct states
can always provide truthful information to neighboring clusters. This property is exploited in Alg. 2
by applying Alg. 1 in a round-robin fashion to each cluster. Clusters either eliminate their internal
noise in which case they keep their new states and can now help other clusters, or revert back to their
original states. Note that by such a scheduling scheme, neurons can only change their states towards
correct values. This scheduling technique is similar in spirit to the peeling algorithm [24].

3 Recall Performance Analysis

Now let us analyze recall error performance. The following lemma shows that if ϕ and ψ are chosen
properly, then in the absence of external errors the constraints remain satisfied and internal noise
cannot result in violations. This is a crucial property for Alg. 2, as it allows one to determine whether
a cluster has successfully eliminated external errors (Step 4 of algorithm) by merely checking the
satisfaction of all constraint nodes.

2Note that x(`)i (t+1) is further mapped to the interval [0, S−1] by saturating the values below 0 and above
S − 1 to 0 and S − 1 respectively. The corresponding equations are omitted for brevity.

3Note that although the values of y(`)i (t) can be shifted to 0, 1, 2, instead of−1, 0, 1 to match our assumption
that neural states are non-negative, we leave them as such to simplify later analysis.
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Lemma 1. In the absence of external errors, the probability that a constraint neuron (resp. pat-
tern neuron) in cluster ` makes a wrong decision due to its internal noise is given by π(`)

0 =

max
(

0, ν−ψν

)
(resp. P (`)

0 = max
(
0, υ−ϕυ

)
).

Proof is given in [23]. In the sequel, we assume ϕ > υ and ψ > ν so that π(`)
0 = 0 and P (`)

0 = 0.
However, an external error combined with internal noise may still push neurons to an incorrect state.

Given the above lemma and our neural architecture, we can prove the following surprising result: in
the asymptotic regime of increasing number of iterations of Alg. 2, a neural network with internal
noise outperforms one without. Let us define the fraction of errors corrected by the noiseless and
noisy neural network (parametrized by υ and ν) after T iterations of Alg. 2 by Λ(T ) and Λυ,ν(T ),
respectively. Note that both Λ(T ) ≤ 1 and Λυ,ν(T ) ≤ 1 are non-decreasing sequences of T . Hence,
their limiting values are well defined: limT→∞ Λ(T ) = Λ∗ and limT→∞ Λυ,ν(T ) = Λ∗υ,ν .

Theorem 2. Let us choose ϕ and ψ so that π(`)
0 = 0 and P (`)

0 = 0 for all ` ∈ {1, . . . , L}. For the
same realization of external errors, we have Λ∗υ,ν ≥ Λ∗.

Proof is given in [23]. The high level idea why a noisy network outperforms a noiseless one comes
from understanding stopping sets. These are realizations of external errors where the iterative Alg. 2
cannot correct all of them. We show that the stopping set shrinks as we add internal noise. In other
words, we show that in the limit of T →∞ the noisy network can correct any error pattern that can
be corrected by the noiseless version and it can also get out of stopping sets that cause the noiseless
network to fail. Thus, the supposedly harmful internal noise will help Alg. 2 to avoid stopping sets.

Thm. 2 suggests the only possible downside with using a noisy network is its possible running time
in eliminating external errors: the noisy neural network may need more iterations to achieve the
same error correction performance. Interestingly, our empirical experiments show that in certain
scenarios, even the running time improves when using a noisy network.

Thm. 2 indicates that noisy neural networks (under our model) outperform noiseless ones, but does
not specify the level of errors that such networks can correct. Now we derive a theoretical upper
bound on error correction performance. To this end, let Pci be the average probability that a cluster
can correct i external errors in its domain. The following theorem gives a simple condition under
which Alg. 2 can correct a linear fraction of external errors (in terms of n) with high probability.
The condition involves λ̃ and ρ̃, the degree distributions of the contracted graph G̃.

Theorem 3. Under the assumptions that graph G̃ grows large and it is chosen randomly with degree
distributions given by λ̃ and ρ̃, Alg. 2 is successful if

ελ̃

1−
∑
i≥1

Pci
zi−1

i!
· d

i−1ρ̃(1− z)
dzi−1

 < z, for z ∈ [0, ε]. (4)

Proof is given in [23] and is based on the density evolution technique [25]. Thm. 3 states that for any
fraction of errors Λυ,ν ≤ Λ∗υ,ν that satisfies the above recursive formula, Alg. 2 will be successful
with probability close to one. Note that the first fixed point of the above recursive equation dictates
the maximum fraction of errors Λ∗υ,ν that our model can correct. For the special case of Pc1 = 1 and
Pci = 0,∀i > 1, we obtain ελ̃1− ρ̃(1− z)) < z, the same condition given in [9]. Thm. 3 takes into
account the contribution of all Pci terms and as we will see, their values change as we incorporate
the effect of internal noise υ and ν. We will see in the next section that the maximum value of Pci
does not occur when the internal noise is equal to zero, i.e. υ = ν = 0, but instead when the neurons
are contaminated with internal noise! This also suggests that even individual clusters are able to
correct more errors in the presence of internal noise. A typical trend of Pci ’s in terms of ν is shown
in Fig. 2 (note that maximum values are not at υ = 0).

3.1 Simulations

Now we consider simulation results for a finite system. To learn the subspace constraints (1) for each
cluster G(`) we use the learning algorithm in [9]. Henceforth, we assume that the weight matrix W
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Figure 2: The value of Pci as a function of pattern
neurons noise υ for i = 1, . . . , 4. The noise at
constraint neurons is assumed to be zero (ν = 0).

0.00 0.05 0.10
0.00

0.05

0.10

0.15

ε

Fi
na

lS
E

R

υ = 0, ν = 0-Sim

υ = 0, ν = 0-Thr

υ = 0.2, ν = 0-Sim

υ = 0.2, ν = 0-Thr

υ = 0.4, ν = 0-Sim

υ = 0.4, ν = 0-Thr

υ = 0.6, ν = 0-Sim

υ = 0.6, ν = 0-Thr
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Figure 4: The final SER vs. internal noise parameters at pattern and constraint neurons for ε = 0.125

is known and given. In our setup, we consider a network of size n = 400 with L = 50 clusters. We
have 40 pattern nodes and 20 constraint nodes in each cluster, on average. External error is modeled
by randomly generated vectors z with entries ±1 with probability ε and 0 otherwise. Vector z is
added to the correct patterns, which satisfy (1). For recall, Alg. 2 is used and results are reported
in terms of Symbol Error Rate (SER) as the level of external error (ε) or internal noise (υ, ν) is
changed; this involves counting positions where the output of Alg. 2 differs from the correct pattern.

3.1.1 Symbol Error Rate as a function of Internal Noise

Fig. 3 illustrates the final SER of our algorithm for different values of υ and ν. Recall that υ and
ν quantify the level of noise in pattern and constraint neurons, respectively. Dashed lines in Fig. 3
are simulation results whereas solid lines are theoretical upper bounds provided in this paper. As
evident, there is a threshold phenomenon such that SER is negligible for ε ≤ ε∗ and grows beyond
this threshold. As expected, simulation results are better than the theoretical bounds. In particular,
the gap is relatively large as υ moves towards one.

A more interesting trend in Fig. 3 is the fact internal noise helps in achieving better performance, as
predicted by theoretical analysis (Thm. 2). Notice how ε∗ moves towards one as ν increases.

This phenomenon is examined more closely in Figs. 4a and 4b where ε is fixed to 0.125 while υ
and ν vary. As we see, a moderate amount of internal noise at both pattern and constraint neurons
improves performance. There is an optimum point (υ∗, ν∗) for which the SER reaches its minimum.
Fig. 4b indicates for instance that ν∗ ≈ 0.25, beyond which SER deteriorates.
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Figure 6: The effect of internal noise on the number of iterations performed by Alg. 2, for different
values of υ and ν with ε = 0.075. The average iteration number of 40 indicate the failure of Alg. 2.

3.2 Recall Time as a function of Internal Noise

Fig. 5 illustrates the number of iterations performed by Alg. 2 for correcting the external errors when
ε is fixed to 0.075. We stop whenever the algorithm corrects all external errors or declare a recall
error if all errors were not corrected in 40 iterations. Thus, the corresponding areas in the figure
where the number of iterations reaches 40 indicates decoding failure. Figs. 6b and 6a are projected
versions of Fig. 5 and show the average number of iterations as a function of υ and ν, respectively.

The amount of internal noise drastically affects the speed of Alg. 2. First, from Fig. 5 and 6a observe
that running time is more sensitive to noise at constraint neurons than pattern neurons and that the
algorithms become slower as noise at constraint neurons is increased. In contrast, note that internal
noise at the pattern neurons may improve the running time, as seen in Fig. 6b.

Note that the results presented here are for the case where the noiseless decoder succeeds as well and
its average number of iterations is pretty close to the optimal value (see Fig. 5). In [23], we provide
additional results corresponding to ε = 0.125, where the noiseless decoder encounters stopping sets
while the noisy decoder is still capable of correcting external errors; there we see that the optimal
running time occurs when the neurons have a fair amount of internal noise.

In [23] we also provide results of a study for a slightly modified scenario where there is only internal
noise and no external errors. Furthermore, ϕ < υ. Thus, the internal noise can now cause neurons to
make wrong decisions, even in the absence of external errors. There, we witness the more familiar
phenomenon where increasing the amount of internal noise results in a worse performance. This
finding emphasizes the importance of choosing update threshold ϕ and ψ according to Lem. 1.
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4 Pattern Retrieval Capacity

For completeness, we review pattern retrieval capacity results from [9] to show that the proposed
model is capable of memorizing an exponentially large number of patterns. First, note that since the
patterns from a subspace, the number of patterns C does not have any effect on the learning or recall
algorithms (except for its obvious influence on the learning time). Thus, in order to show that the
pattern retrieval capacity is exponential in n, all we need to demonstrate is that there exists a training
set X with C patterns of length n for which C ∝ arn, for some a > 1 and 0 < r.

Theorem 4 ( [9]). Let X be a C × n matrix, formed by C vectors of length n with entries from the
set Q. Furthermore, let k = rn for some 0 < r < 1. Then, there exists a set of vectors for which
C = arn, with a > 1, and rank(X ) = k < n.

The proof is constructive: we create a dataset X such that it can be memorized by the proposed
neural network and satisfies the required properties, i.e. the subpatterns form a subspace and pattern
entries are integer values from the set S = {0, . . . , S − 1}. The complete proof can be found in [9].

5 Discussion

We have demonstrated that associative memories with exponential capacity still work reliably even
when built from unreliable hardware, addressing a major problem in fault-tolerant computing and
further arguing for the viability of associative memory models for the (noisy) mammalian brain.
After all, brain regions modeled as associative memories, such as the hippocampus and the olfactory
cortex, certainly do display internal noise [12, 13, 26]. The linear-nonlinear computations of Alg. 1
are certainly biologically plausible, but implementing the state reversion computation of Alg. 2 in a
biologically plausible way remains an open question.

We found a threshold phenomenon for reliable operation, which manifests the tradeoff between
the amount of internal noise and the amount of external noise that the system can handle. In fact,
we showed that internal noise actually improves the performance of the network in dealing with
external errors, up to some optimal value. This is a manifestation of the stochastic facilitation [13] or
noise enhancement [14] phenomenon that has been observed in other neuronal and signal processing
systems, providing a functional benefit to variability in the operation of neural systems.

The associative memory design developed herein uses thresholding operations in the message-
passing algorithm for recall; as part of our investigation, we optimized these neural firing thresholds
based on the statistics of the internal noise. As noted by Sarpeshkar in describing the properties of
analog and digital computing circuits, “In a cascade of analog stages, noise starts to accumulate.
Thus, complex systems with many stages are difficult to build. [In digital systems] Round-off error
does not accumulate significantly for many computations. Thus, complex systems with many stages
are easy to build” [27]. One key to our result is capturing this benefit of digital processing (thresh-
olding to prevent the build up of errors due to internal noise) as well as a modular architecture which
allows us to correct a linear number of external errors (in terms of the pattern length).

This paper focused on recall, however learning is the other critical stage of associative memory op-
eration. Indeed, information storage in nervous systems is said to be subject to storage (or learning)
noise, in situ noise, and retrieval (or recall) noise [11, Fig. 1]. It should be noted, however, there
is no essential loss by combining learning noise and in situ noise into what we have called external
error herein, cf. [19, Fn. 1 and Prop. 1]. Thus our basic qualitative result extends to the setting where
the learning and stored phases are also performed with noisy hardware.

Going forward, it is of interest to investigate other neural information processing models that ex-
plicitly incorporate internal noise and see whether they provide insight into observed empirical phe-
nomena. As an example, we might be able to understand the threshold phenomenon observed in
the SER of human telegraph operators under heat stress [28, Fig. 2], by invoking a thermal internal
noise explanation.
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6 Proof of Lemma 1

To calculate the probability that a constraint node makes a mistake when there is no external noise,
consider constraint node i whose decision parameter will be

h
(`)
i =

(
W (`) · x(`)

)
i
+ vi = vi.

Therefore, the probability of making a mistake will be

π
(`)
0 = Pr{|vi| > ψ}

= max

(
0,
ν − ψ
ν

)
. (5)

Thus, to make π(`)
0 = 0 we will select ψ > ν.4 So from now on, we assume

π(0) = 0. (6)

Now knowing that the constraint will not send any non-zero messages in absence of external noise,
we focus on the pattern neurons in the same circumstance. A given pattern node x(`)j will receive
a zero from all its neighbors among the constraint nodes. Therefore, its decision parameter will be
g
(`)
j = uj . As a result, a mistake could happen if |uj | ≥ ϕ. The probability of this event is given by

P
(`)
0 = Pr{|ui| > ϕ}

= max

(
0,
υ − ϕ
ϕ

)
. (7)

Therefore, to make P (`)
0 go to zero, we must select ϕ ≥ υ. As our numerical analysis in Appendix

12 shows, this choice is in harmony with our goal to minimize P (`)
1 as well.

7 Proof of Theorem 2

We first show that the noisy neural network can correct any external error pattern that the noiseless
counterpart can correct in the limit of T → ∞. The idea is that if the noiseless decoder succeeds,
then there is a non-zero probability P that the noisy decoder succeeds in a given round as well
(corresponding to the case that noise values are rather small). Since we do not introduce new errors
during the application of Alg. 2, the number of errors in the new rounds are smaller than or equal to
the previous round, hence, the probability of success is lower bounded by P . If we apply Alg. 2 T
times, then the probability of correcting the external errors at the end of round T is P +P (1−P ) +
· · ·+ P (1− P )T−1 = 1− (1− P )T . Since P > 0, for T →∞ this probability tends to 1.

Now, we turn our attention to the cases where the noiseless network fails in eliminating external
errors and show that there exist external error patterns, called stopping sets, for which the noisy
decoder is capable of eliminating them while the noiseless network has failed. Assuming that each
cluster can eliminate i external errors in their domain and in absence of internal noise5, stopping
sets correspond to noise pattern in which each cluster has more than i errors. Then Alg. 2 can not
proceed any further. However, in the noisy network, there is a chance that in one of the rounds, the
noise acts in our favor and the cluster could correct more than i errors. This is reflected in Fig. 2 as
well, where the value of Pci is larger when the network is noisy. In this case, if the probability of
getting out of the stopping set is P in each round, for some P > 0, then a similar argument to the
previous case shows that P → 1 when T →∞. This concludes the proof.

If the amount of internal or external noise is too high, the noisy architecture will eventually get stuck
just like the noiseless network.

4Note that this might not be possible in all cases since, as we will see later, the minimum absolute value of
network weights should be at least ψ. Therefore, if ψ is too large we might not be able to find a proper set of
weights.

5From Fig. 2, i = 2 for our case.
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Figure 7: An external noise pattern that contains a stopping set in a noiseless neural circuit. Left
figure shows tha original pattern and the right figure illustrates the result of the decoding algorithm
after sufficient number of iterations where the algorithm gets stuck. Blue pattern nodes are those
that are connected to at least one cluster with a single external error. Obviously, the stopping set on
the right does not have any blue nodes.

Fig. 7a illustrates an example of a stopping set over the graph G̃ in our empirical studies. In the
figure, only the nodes corrupted with external noise are shown for clarity. Pattern neurons that
are connected to at least one cluster with a single error are colored blue and other pattern neurons
are colored red. Figure 7b illustrates the same network but after a sufficient number of decoding
iterations which results in the algorithm to get stuck. Obviously, we have a stopping set in which no
cluster has a single error and the algorithm could not proceed further since Pci ' 0 for i > 1 in a
noiseless architecture. Thus, the external error can not get corrected.

As evident from Fig. 7, the stopping set is the result of clusters not being able to correct more than
one external errors. And this is the place where internal noise might come to rescue. Interestingly,
an “unreliable” neural circuit in which υ = .6 could easily get out of the stopping set shown in
Fig. 7b and correct all of the external errors. The reason might be because we try several times to
correct errors in a cluster (and overall in the network) while making sure that the algorithm does not
introduce new errors itself. Thus, the noise might act in our favor in one of these attempts and the
algorithm might be able to avoid stopping set as depicted in Fig. 7.

8 Proof of Theorem 3

The proof is based on the density evolution technique [25]. Without loss of generality, assume that
we have Pc1 , Pc2 and Pc3 but the approach can easily be extended if we have Pci for i > 3. Let
Π(t) be the average probability that a cluster node sends a failure message, i.e. that it can not correct
external errors lying in its domain. Then, the probability that a pattern neuron with degree di can
not be corrected will be the probability that none of its neighboring clusters can correct the error, i.e.

Pi = (Π(t))di

Averaging over di we find that the average probability of error in iteration t will be

z(t+ 1) = λ(Π(t)) (8)

Now consider a cluster ` that contains d` pattern neurons. This cluster will not send a failure message
to a noisy pattern neuron in its domain with probability:

1. Pc1 , if it is not connected to any other noisy neuron.
2. Pc2 , if it is connected to exactly one other constraint neuron.
3. Pc3 , if it is connected to exactly two other constraint neurons.
4. 0, if it is connected to more than two other constraint neuron.
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Figure 8: The effect of internal noise on the number of iterations performed by Alg. 2, for different
values of υ and ν with ε = 0.125.

Thus, we obtain

Π(`)(t) = 1− Pc1(1− z)d`−1 − Pc2
(
d` − 1

1

)
z(1− z)d`−2 − Pc3

(
d` − 1

2

)
z2(1− z)d`−3.

Averaging over d` we obtain

Π(t) = Ed`
(

Π(`)(t)
)

= 1− Pc1ρ(1− z(t))− Pc2zρ′(1− z(t))− 0.5Pc2z
2ρ”(1− z(t)), (9)

where ρ′(x) and ρ′′(x) are derivatives of the function ρ(x) with respect to x.

Equations (8) and (9) will give us the value of z(t+ 1) as a function of z(t). We can then calculate
the final BER as z(∞). For z(∞) → 0, it is sufficient to have z(t + 1) < z(t), which proves the
theorem.

9 More Results on Recall Time as a function of Internal Noise

Fig. 8 illustrates the number of iterations performed by Alg. 2 for correcting the external errors when
ε is fixed to 0.125. We choose not to run the algorithm beyond 40 iterations, as the algorithm can
typically correctly denoise the pattern with less than 40 iterations or it fails. Thus, the corresponding
areas in the figure where the number of iterations reaches 40 indicate decoding failure. Figs. 9b and
9a are projected versions of Fig. 8 and show the average number of iterations as a function of υ and
ν, respectively.

Surprisingly, the amount of internal noise drastically affects the speed of Alg. 2. Internal noise in
pattern neurons is necessary for Alg. 2 to be successful, as shown in Fig. 9a. Notice the curve with
υ = 0 which indicates that Alg. 2 is never successful in denoising the pattern while by increasing υ
the denoising process is completed in less than 40 iterations . The same figure also shows that there
is an optimal value ν∗ = 0.25 for which the number of iterations is minimized. Furthermore, a close
inspection of Fig. 9b reveals the same phenomenon, i.e., around υ∗ = 0.4, the number of iterations
reaches its minimum.

10 Effect of internal noise on the performance of the neural network in
absence of external noise

At this point, we are interested in investigating the effects of internal noise on a particular network
without external noise. More specifically, we assume ε = 0 but υ > 0, ν > 0. Furthermore,
in contrast to what we have considered so far, we select ϕ < υ. Therefore, even if there is no
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Figure 9: The effect of internal noise on the number of iterations performed by Alg. 2, for different
values of υ and ν with ε = 0.125. The average iteration number of 40 indicate the failure of Alg. 2.
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Figure 10: The effect of the internal noise on final PER as a function of υ and ν in absence of
external noise.

external noise, the pattern neurons could be corrupted due to internal noise parameter υ. With abuse
of notation, we assume the pattern neurons to be corrupted with a ±1 noise added to them with
probability υ. The rest of the scenario is the same as before. Fig. 10 illustrates the effect of the
internal noise as a function of υ and ν, the noise parameters at the pattern and constraint nodes,
respectively.

As evident from the figure, the higher the noise is on the pattern side, the higher the pattern error
rate (PER) will be, i.e. the performance deteriorates as a function of internal noise. This behavior is
shown in Figs. 11a and 11b for better inspection.

Interestingly, this behavior is very similar to the effect of heat stress on the performance of wireless
telegraphy operators [28, Fig. 2]. The two phenomena might be related because external heat will
translate into neurons with more internal thermal noise.
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Figure 11: The effect of the internal noise on final PER as a function of υ and ν in absence of
external noise.

11 Estimating Pc1 Theoretically

To bound Pc1 , consider four event probabilities for a cluster:

• π(`)
0 (resp. P (`)

0 ): The probability that a constraint neuron (resp. pattern neuron) in cluster `
makes a wrong decision due to its internal noise when there is no external noise introduced
to cluster `, i.e. ‖z(`)‖0 = 0.

• π(`)
1 (resp. P (`)

1 ): The probability that a constraint neuron (resp. pattern neuron) in cluster
` makes a wrong decision due to its internal noise when one input error (external noise) is
introduced, i.e. ‖z(`)‖0 = ‖z(`)‖1 = 1.

Notice P (`)
c1 = 1− P (`)

1 .

We derive an upper bound on the probability a constraint node makes a mistake in the presence of
one external error.
Lemma 5. In the presence of a single external error, the probability that a constraint neuron makes
a wrong decision due to its internal noise is given by

π
(`)
1 ≤ max

(
0,
ν − (η − ψ)

2ν

)
,

where η = mini,j,Wij 6=0 (|Wij |) is the minimum absolute value of the non-zero weights in the neural
graph and is chosen such that η ≥ ψ.6

Proof. Without loss of generality, we assume it is the first pattern node, x(`)1 , that is corrupted with
noise whose value is +1. Now we would like to calculate the probability that a constraint node
makes a mistake in such circumstances. Furthermore, we will only the constraint neurons that are
connected to x(`)1 . Because for the other constraint neurons, the situation is the same as the previous
cases where there were no external noise.

for a constraint neuron j that is connected to x(`)1 , the decision parameter is

h
(`)
j =

(
W (`).(x(`) + z(`))

)
j

+ vj

= 0 +
(
W (`).z(`)

)
j

+ vj

= wj1 + vj .

6This condition can be enforced during simulations as long as ψ is not too large, which itself is determined
by the level of constraint neuron internal noise, ν, as we must have ψ ≥ ν.
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We consider two error events:

1. A constraint node j makes a mistake and does not send a message at all. The probability
of this event is denoted by π(1)

1 .

2. A constraint node j makes a mistake and sends a message with the opposite sign. The
probability of this event is denoted by π(1)

2 .

We first calculate the probability of π(1)
2 . Without loss of generality, assume the wj1 > 0 so that the

probability of an error of type two is as follows (the case for wj1 < 0 is exactly the same):

π
(1)
2 = Pr{wji + vj < −ψ}

= max

(
0,
ν − (ψ + wj1)

2ν

)
. (10)

However, since ψ > ν and wj1 > 0, then ν− (ψ+wj1) < 0 and π(1)
2 = 0. Therefore, the constraint

neurons will never send a message that has an opposite sign to what it should have. All that remains
to do is to calculate the probability that they remain silent by mistake.

To this end, we will have

π
(1)
1 = Pr{|wji + vj | < ψ}

= max

(
0,
ν + min(ψ − wj1, ν)

2ν

)
. (11)

The above equation can be simplified if we assume that the absolute value of all weights in the
network is bigger than a constant η > ψ. Then, the above equation will simplify to

π
(1)
1 ≤ max

(
0,
ν − (η − ψ)

2ν

)
. (12)

Putting the above equations together, we obtain:

π(1) ≤ max

(
0,
ν − (η − ψ)

2ν

)
. (13)

In the case η − ψ > ν, we could even manage to make this probability equal to zero. However, we
will leave it as is and use (13) to calculate P (`)

1 .

11.1 Calculating P (`)
1

We start by first calculating the probability that a non-corrupted pattern node x(`)j makes a mistake,

which is to change its state in round 1. Let us denote this probability by q(`)1 . Now to calculate q(`)1

assume x(`)j has degree dj and it has b common neighbors with x(`)1 , the corrupted pattern node.

Out of these b common neighbors, bc will send ±1 messages and the others will, mistakenly, send
nothing. Thus, the decision making parameter of pattern node j, g(`)j , will be bounded by

g
(`)
j =

(
sign(W (`))> · y(`)

)
j

dj
+ uj . ≤

bc
dj

+ uj .

We will denote
(
sign(W (`))> · y(`)

)
j

by oj for brevity from this point on.

In this circumstances, a mistake happens when |g(`)j | ≥ ϕ. Thus

q
(`)
1 = Pr{|g(`)j | ≥ ϕ|deg(aj) = dj&|N (x1) ∩N (aj)| = a}

= Pr{oj
dj

+ uj ≥ ϕ}+ Pr{oj
dj

+ uj ≤ −ϕ}, (14)
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where N (ai) represents the neighborhood of pattern node ai among constraint nodes.

By simplifying (14) we get

q
(`)
1 (oj) =


+1, if |oj | ≥ (υ + ϕ)dj
max(0, υ−ϕυ ), if |oj | ≤ |υ − ϕ|dj
υ−(ϕ−oj/dj)

2υ , if |oj − ϕdj | ≤ υdj
υ−(ϕ+oj/dj)

2υ , if |oj + ϕdj | ≤ υdj .

We now average this equation over oj , bc, b and dj . To start, suppose out of the bc non-zero messages
the node aj receives, e of them have the same sign as the link they are being transmitted over. Thus,
we will have oj = e − (bc − e) = 2e − bc. Assuming the probability of having the same sign for
each message is 1/2, the probability of having e equal signs out of bc elements will be

(
bc
e

)
(1/2)bc .

Thus, we will get

q̄
(`)
1 =

bc∑
e=0

(
bc
e

)
(1/2)bcq

(`)
1 (2e− bc). (15)

Now note that the probability of having a − bc mistakes from the constraint side is given by(
b
bc

)
(π

(`)
1 )b−bc(1− π(`)

1 )bc . With some abuse of notations we get:

q̄
(`)
1 =

b∑
bc=0

(
b

bc

)
(π

(`)
1 )b−bc(1− π(`)

1 )bc
bc∑
e=0

(
bc
e

)
(1/2)bcq

(`)
1 (2e− bc). (16)

Finally, the probability that aj and x1 have b common neighbors can be approximated by
(
dj
b

)
(1 −

d̄(`)/m`)
dj−b(d̄(`)/m`)

b, where d̄(`) is the average degree of pattern nodes. Thus (again abusing
some notation), we obtain:

q̄
(`)
1 =

dj∑
b=0

pb

b∑
bc=0

pbc

bc∑
e=0

(
bc
e

)
(1/2)bcq

(`)
1 (2e− bc), (17)

where q(`)1 (2e − bc) is given by (14), pb is the probability of having b common neighbors and is
estimated by

(
dj
b

)
(1− d̄(`)/m`)

dj−b(d̄(`)/m`)
b, with d̄(`) being the average degree of pattern nodes

in cluster `. Furthermore, pbc is the probability of having b−bc out of these b nodes making mistakes.
Hence, pbc =

(
b
bc

)
(π

(`)
1 )b−bc(1 − π(`)

1 )bc . We will not simplify the above equation any further and
use it as it is in our numerical analysis in order to obtain the best parameter ϕ.

Now we will turn our attention to the probability that the corrupted node, x1, makes a mistake,
which is either not to update at all or update its itself in the wrong direction. Recalling that we have
assume the external noise term in x1 to be a +1 noise, the wrong direction would be for node x1 to
increase its current value instead of decreasing it. Furthermore, we assume that out of d1 neighbors
of x1, some j of them have made a mistake and will not send any messages to x1. Thus, the decision
parameter of x1, will be g(`)1 = u + (d1 − j)/d1. Denoting the probability of making a mistake at
x1 by q(`)2 we will get

q
(`)
2 = Pr{g(`)1 ≤ ϕ|deg(x1) = d1 and j errors in constraints}

= Pr{d1 − j
d1

+ u < ϕ}, (18)

which simplifies to

q
(`)
2 (j) =


+1, if |j| ≥ (1 + υ − ϕ)d1
max(0, υ−ϕυ ), if |j| ≤ (1− υ − ϕ)d1
υ+ϕ−(d1−j)/d1

2υ , if |ϕd1 − (d1 − j)| ≤ υd1.
(19)
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Here, we have π(`)

1 = 0.01.

Noting that the probability of making j mistakes on the constraint side is
(
d1
j

)
(π

(`)
1 )j(1−π(`)

1 )d1−j ,
we get

q̄
(`)
2 =

d1∑
j=0

(
d1
j

)
(π

(`)
1 )j(1− π(`)

1 )d1−jq(`)2 (j), (20)

where q(`)2 (j) is given by (19).

Putting the above results together, the overall probability of making a mistake on the side of pattern
neurons when we have one bit of external noise is given by

P
(`)
1 =

1

n(`)
q̄
(`)
2 +

n(`) − 1

n(`)
q̄
(`)
1 . (21)

Finally, the probability that cluster ` could correct one error is that all neurons take the correct
decision, i.e.

P (`)
c1 = (1− P (`)

1 )n
(`)

and the average probability that clusters could correct one error is simply

Pc1 = E`(P (`)
c1 ). (22)

We will use this equation in order to find the best update threshold ϕ.

12 Choosing proper ϕ

We now apply numerical methods to (21) to find the best ϕ for different values of noise parameter,
υ. The following figures show the best choice for the parameter ϕ. The update threshold on the
constraint side is chosen such that ψ > ν. In each figure, we have illustrated the final probability of
making a mistake, P (`)

1 , for comparison.

Fig. 13 illustrates the behavior of the error probability as a function of ϕ for different values of υ
and for π(`)

1 = 0.02. The interesting trend here is that in all cases, ϕ∗, the update threshold that
gives the best result, is chosen such that it is quite large. This actually is in line with our expectation
because a small ϕ will results in non-corrupted nodes to update their states more frequently. On the
other hand, a very large ϕ will prevent the corrupted nodes to correct their states, specially if there
are some mistakes made on the constraint side, i.e. π(`)

1 > 0. Therefore, since we have much more
non-corrupted nodes to the corrupted nodes, it is best to choose a rather high ϕ but not too high.

Please also note that when π(`)
1 is very high, there are no values of υ for which error-free storage is

possible.
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Fig. 13 illustrates the behavior of the error probability as a function of ϕ for different values of υ and
for π(`)

1 = 0.01. As evident from the figure, choosing a larger ϕ results in smaller error probability.
Moreover, in all cases we have ϕ∗ > υ. We use this choice, which also makes P (`)

0 = 0.

18


	Introduction
	Associative Memory Model
	Recall Performance Analysis
	Simulations
	Symbol Error Rate as a function of Internal Noise

	Recall Time as a function of Internal Noise

	Pattern Retrieval Capacity
	Discussion
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Theorem 3
	More Results on Recall Time as a function of Internal Noise
	Effect of internal noise on the performance of the neural network in absence of external noise
	Estimating Pc1 Theoretically
	Calculating P()1

	Choosing proper 

