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ABSTRACT

We consider the position calibration problem in circular tomography
devices, where sensors deviate from a perfect circle. We introduce
a new method of calibration based on the time-of- ight measure-
ments between sensors when the enclosed medium is homogeneous.
Bounds on the reconstruction errors are proven and results of simu-
lations mimicking a scanning device are presented.

Index Terms— Calibration, Ultrasound Tomography, Matrix
Completion, Multi-dimensional Scaling

1. INTRODUCTION

Ultrasound tomography aims at recovering certain features of a
medium, based on measurements obtained by sending ultrasound
signals through it. To this end, one requires to have a reliable setup
for obtaining the measurements, a proper forward model imitating
the measurement setup and an accurate inverse model based on
which the characterizations of the medium can be estimated. Often,
the forward model is used in the inverse process as well [1].

One of the key requirements of the methods for solving the for-
ward and inverse problems is to have a good estimate of the positions
of the sensors in the measurement setup. In order to associate the
measurements to the values of the ultrasound eld, the tomography
model must be calibrated with the exact sensor locations prior to the
experiment.

In this paper, we assume that the ultrasound tomography de-
vice has a circular shape, in which the sensors are placed approx-
imately on the interior boundary of a ring surrounding the object to
be scanned. This model is used for wind tomography [2] and breast
cancer detection [3, 4].

In order to estimate the sensor positions, we use the time-of-
ight (ToF) of ultrasound signals, de ned by the time taken by an

ultrasound wavefront to travel from a transmitter to a receiver. The
position calibration is carried out using the ToF measurements be-
tween sensors in a homogeneous medium. However, there are a
number of challenges in this work, namely,

• The ToF matrices obtained in a practical setup have missing
entries.

• The measured entries of the ToF matrices are corrupted by
noise.

• There is an unknown time delay added to the measurements.

If one had the complete and noiseless ToF matrix without time delay,
the task of nding the exact positions would be very simple. This
problem has been addressed in the literature as multi-dimensional
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scaling (MDS) [5]. Nevertheless, the ToF matrix in a practical setup
is never complete and many of the time-of- ight values are missing.

In general, it is a dif cult task to infer missing entries of a ma-
trix. However, it has recently been demonstrated that if the matrix
has low rank, a small random subset of its entries allows to recon-
struct it exactly. This result was rst proved by Candès and Recht
who analyzed a convex relaxation of this low-rank matrix comple-
tion problem [6]. More recently, an alternative approach using a
combination of spectral techniques and manifold optimization was
introduced in [7]. This algorithm used in our work is referred as
OPTSPACE and has been shown to be stable under noisy measure-
ments [8]. We show that a modi ed version of the ToF matrix has
low rank and its missing entries can be accurately estimated using
OPTSPACE. We state theoretical bounds on the performance of our
proposed method under mild assumptions.

This paper is organized as follows. In Section 2, we de ne the
problem statement and dif culties of calibration in circular devices.
In Section 3, we introduce our main results on the error bounds for
the calibration, and nally in Section 4, results of simulations for
validating the proposed method are presented.

2. CIRCULAR TOMOGRAPHY

The focus of this paper is ultrasound tomography with circular aper-
tures. In this setup, n ultrasound transducers are installed on the
interior edge of a circular ring. The transducers are capable of both
transmitting and receiving ultrasound signals. The general con g-
uration for such a tomography device is depicted in Fig. 1. Each
transducer is red in turn while the rest record the scattered eld
reaching the ring. Using these measurements, one is interested in
nding the sound speed distribution or sound attenuation inside the

object surrounded by the ring.

2.1. Homogeneous Medium

If the medium inside the ring is homogeneous with constant sound
speed c0, having the ToFs between sensors, one can construct a dis-
tance matrix D consisting of the mutual distances between sensors
as

D = [di,j] = c0T , T = [ti,j ], i, j ∈ [n] ,

where ti,j is the ToF between sensors i and j. Note that the only dif-
ference between T and D, is the constant c0. Knowing temperature
and characteristics of the homogeneous medium inside the ring, one
can accurately estimate c0. Thus, we will assume that c0 is a-priori
known for the calibration and in the sequel will focus on the distance
matrix D rather than the actual measured matrix T .

Since the enclosed medium is homogeneous, matrix D is sym-
metric with zeros on the diagonal. Even though the distance matrix
is full rank in general, a simple point-wise transform of its entries
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Fig. 1. Circular setup for ultrasound tomography considered in this
work. Ultrasound transducers are distributed on the edge of a cir-
cular ring and the object with unknown characteristics is put inside.
Sources and receivers are colocated.

leads to a low rank matrix. More precisely we can prove the follow-
ing lemma

Lemma 1. If one constructs the squared distance matrix D̄ as

D̄ = [d2

i,j], i, j ∈ [n] ,

then the matrix D̄ has rank at most 4 and if the sensors are on a
circle, the rank is exactly 3.

Proof. The proof for the general case is provided in [5] and the proof
for circular case can be found in our technical report [9].

2.2. Time of Flight Estimation

In order to estimate the exact time of ights, one needs to compare
the received signal with the transmitted signal and use existing meth-
ods (e.g. cross correlation based methods) to nd the relative delay
between them. However, in our case, the lack of a reference sig-
nal leaves no choice than computing the absolute ToFs. One way
to nd the absolute ToFs is to probe the received signal and de ne
the ToF as the time instance at which the received signal power ex-
ceeds some prede ned threshold. This is also known as the rst
arrival method. However, using this method, one cannot retrieve the
information about the time origin in the signal. Together with the
transitional behaviour of the sensors, this causes an unknown delay
added to the actual ToFs.

Moreover, because of the limited beam width of ultrasound
transducers deployed on the circle, and also the late response of
the transducers, it is not possible to obtain reliable measurements
for the sensors close to each other. Thus, numbering the sensors
from 1 to n, in the ToF matrix T (equivalently D), we do not have
measurements on speci c bands of the matrix. According to Fig. 2,
we will assume that each sensor does not have ToF measurement of
the sensors which lie in a radius of δn from it. We will call these
entries as structured missing entries.

Further, during the measurement and ToF estimation procedure,
some pairs of sensors give outliers. This can be caused by mea-
surement noise, or the ToF estimation algorithm for nding the rst
arrivals. One can de ne a smoothness criteria in the ToF matrix and

r0

a

δn

Fig. 2. Sensors are uniformly distributed on a circular ring of width
a. The beam width and transient response of the transmitter causes
the neighbouring sensors not to have reliable ToF measurements.
Sensors lying in the dark gray part will not have a distance mea-
surement from the centred sensor.

remove the entries which do not satisfy this criteria. We will refer to
these entries as random missing entries. Eventually, an instance of
the ToF matrix will look like

T =

?

?

?

where, the gray parts represent missing entries. The above men-
tioned problems result in an incomplete matrix T , which cannot be
used for position reconstruction, unless the unknown time delay is
removed from the measurements and the unknown entries are esti-
mated.

3. POSITION CALIBRATION

In this paper, we assume that the time delay is known and subtracted
from the ToF measurements. We have provided a method in [9] for
heuristically nding the time delay in a case where the sensors are
distributed exactly on a circle. The method is also applicable to the
current model. Here, in our model we assume that sensor positions
deviate from a perfect circle. More precisely, we will assume that
the sensors are uniformly distributed on the area between two circles
of radii r0 − a/2 and r0 + a/2 (the light gray ring in Fig. 2).

In order to incorporate the structured missing entries, we assume
that measurements between sensors of distance less than δn are miss-
ing. The number of structured missing entries depends on δ2

n. We
are interested in a regime where we have a small number of struc-
tured missing entries in the large systems limit. Accordingly, we will
assume that δn of interest is δn = Θ(r

p
log n/n). A random set of

structured missing indices S ⊆ [n] × [n] is de ned from {xi} and
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δn, by
S = {(i, j) : di,j ≤ δn and i �= j} ,

where di,j = ‖xi − xj‖. Then, the structured missing entries are
denoted by a matrix

D
s
i,j =

(
Di,j if (i, j) ∈ S

0 otherwise.

Note that the matrix D
s̄ = D − D

s captures the noiseless dis-
tance measurements that are not affected by structured missing en-
tries. Next, to model the noise we add a random noise matrix Z

s̄

Z
s̄
i,j =

(
Zi,j if (i, j) ∈ S⊥

0 otherwise,

where S⊥ denotes the complementary set of S.
Finally to model the random missing entries, we assume that

each entry of D − D
s + Z

s̄ is sampled with probability pn. In
the calibration data, we typically have a small number of random
missing entries. Hence, we assume that pn = θ(1). Let E ⊆ [n] ×
[n] denote the subset of indices which are not erased by random
missing entries. Then a projection PE : R

n×n → R
n×n is de ned

as

PE(M )i,j =

(
Mi,j if (i, j) ∈ E

0 otherwise .

We denote the observed measurement matrix by

N
E = PE(D − D

s + Z
s̄) .

Goal: Given the observed matrix N
E and the missing indices S ∪

E⊥, we want to estimate the positions matrix X ∈ R
n×2.

In order to achieve this goal, rst, we need to infer the missing
entries of N

E , and then estimate the sensor positions given approx-
imate pairwise distances. For the former, we use OPTSPACE algo-
rithm [8] taking (−D

s + Z
s̄) as the new noise matrix and rank 4

property for D̄. For the latter, we use the MDS algorithm [5]. The
following two theorems, provide error bounds on the reconstruction
in both steps.

Theorem 1. Assume n sensors are distributed uniformly at random
on a circular ring of width a with central radius r0 as in Fig. 2. The
resulting distance matrix D is corrupted by structured missing en-
tries D

s and measurement noise Z
s̄. Further, the entries are missing

randomly with probability pn. Let NE = PE(D − D
s + Z

s̄) de-
note the observed matrix. De ne D̄ as the squared distance matrix.
Assume δn = δ r0

p
log n/n and pn = p. Then, there exist con-

stants C1 and C2, such that the output of OPTSPACE b̄D achieves

1

n
‖D̄ − b̄

D‖F ≤ C1

 r
log n

n

!
3

+ C2

‖PE(Y s̄)‖2

pn
, (1)

with probability larger than 1−n−3, where Y
s̄

i,j = Z
2

i,j+2Zi,jDi,j

and
C1 = c δ3 (r0 + a)2 .

We do not assume a prior distribution on Z , and the above the-
orem is stated for any general noise matrix Z .

For evaluating the error on the reconstruction of the positions,
we need to de ne a notion of distance for the error. Since, the MDS
algorithm can nd the positions up to a rigid transformation (rota-
tion, translation and re ection), it is not possible to compare the
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Fig. 3. Error in position estimation in noiseless case for different
values of a.

results of MDS directly with the exact positions. Thus, as de ned
in [10], we will use the matrix

L = In − (1/n)1n1
T
n , (2)

where 1n ∈ R
n is the all ones vector, and In is the identity matrix.

Using the above de nition, one can de ne the error of the position
reconstruction as

d(X ,cX) =
1

n
‖LXX

T
L − LcXcXT

L‖F . (3)

Theorem 2. Applying multidimensional scaling algorithm on b̄D,
the error on the resulting coordinates will be bounded as

d(X ,cX) ≤ C1

 r
log n

n

!
3

+ C2

‖PE(Y s̄)‖2

pn
, (4)

with probability larger than 1 − n−3.

The proofs for the theorems are omitted for brevity and inter-
ested readers are referred to our technical report [9].

The rst term in (4) is in fact due to the structured missing entries
and the second term is caused by the noise in the measurements.
Thus, in a noiseless scenario, the position reconstruction error will
decrease fast as n grows, whereas in a noisy case, the error rate also
depends on the distribution of the noise matrix.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the calibration method, three
sets of experiments are done. First, the distance matrix is assumed
noiseless, and the position estimation error is derived for different
values of n and the ring width a. the value of r0 is set to 10 cm,
on average 5 percent of entries are missing randomly, and δ in The-
orem 1 is assumed to be 1. The results are reported in Fig. 3. As
expected from Theorem 2, the greneral trend in all curves is that the
error decreases as n grows. Moreover, the larger a is, the bigger is
the reconstruction error, which is also compatible with the results of
Theorem 2.

To examine the stability of the estimation algorithm under noise,
we set the values of a to 1 cm, δ to 1, r0 to 10 cm, and the percentage
of random missing entries to 5. We added to each entry of the dis-
tance matrix D a centred white Gaussian noise of different standard
deviations. The results are depicted in Fig. 4. As the variance of the
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Fig. 4. Error in position estimation for the case with centred white
Gaussian noise of different standard deviations, σ.

noise increases, the position estimation error grows, but in general
the error decreases for larger n.

Moreover, to show the importance of calibration in an ultrasound
scanning device, a simple experiment is performed. If the ToF mea-
surements correspond to the exact positions of sensors, reconstruc-
tion of water will lead to a homogeneous region with values equal
to the water sound speed, whereas wrong assumption on the sensor
positions causes the inverse method to give unrelated values as the
sound speed to compensate the effect of position mismatch.

In a simple experiment, we simulated the reconstruction of wa-
ter sound speed using the ToF measurements. In the simulation, 200
sensors are distributed around a circle with radius r0 = 10 cm,
and they deviate on average 0.5 mm from the circumference. In
Fig. 5(a), it is assumed that the sensors are exactly on a circle, while
in Fig. 5(b), we put the output of the calibration as the sensor posi-
tions. Clearly an incorrect assumption on the sensor positions has a
large effect in the reconstruction of the medium.

5. CONCLUSION

The simulation results verify the error bounds found for the estima-
tion of ultrasound sensor positions. We observe that the method is
robust under noise effect as well. One can compare the considered
problem with the classical sensor localization problem, where local
connectivity information between sensors are missing.
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