Outline of Third Recitation Session

BY LIN CHEN

1 Examples about Convergence of Random Variables

1. Convergence in L^p but not almost sure:

 $$X_n = 1_{[0,1]}(2^m U - k),$$

 where U is uniformly distributed on $[0, 1]$ and $n = 2^m + k$ with $0 \leq k < 2^m$.

2. Almost sure convergence but not in L^p:

 $$X_n = n 1_{[0,1/n]}(U),$$

 where U is uniformly distributed on $[0, 1]$.

3. Convergence in probability but neither almost sure nor in L^p:

 $$X_{n,k} = 4^n 1_{[k/2^n,(k+1)/2^n]}(U),$$

 where $k = 0, 1, ..., 2^n - 1$.

4. Convergence in distribution but not in probability: define $\Omega = \{1, 2, 3, 4\}$,

 $$X_n(1) = X_n(2) = 1, X_n(3) = X_n(4) = 0,$$

 $$X(1) = X(2) = 0, X(3) = X(4) = 1.$$

5. Convergence in L^1 but not in L^2:

 $$X_n = n^{2/3} 1_{U \leq 1/n}.$$

6. Convergence in L^q ($0 < q < p$) but not in L^r ($r \geq p$):

 $$X_n = n^{1/p} 1_{U \leq 1/n}.$$

 One can use this to construct a counterexample for convergence in L^q but not in L^r for any $0 < q < r$.

7. Almost sure convergence but Borel-Cantelli Lemma is not satisfied (same example as in the second item):

 $$X_n = n 1_{[0,1/n]}(U).$$

2 Quick Review for σ-Fields and Random Variables

1. The motivation of defining a random variable as a $A/B(\mathbb{R})$-measurable function. Why not use other σ-fields on \mathbb{R}? I will explain this from the perspective of expectation, which plays a central role in the measure-theoretic probability theory.
2. I will explain the following problem:

Problem 1. Let $\Omega = \{a, b, c\}$ and $A = \{\{b, c\}, \{a, b\}\}$. We define three random variables X, Y, Z as follows:

<table>
<thead>
<tr>
<th>ω</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

a. Which of the random variables are $\sigma(A)$-measurable?

b. Find $\sigma(Z)$ and $\sigma(Y)$. Is Y, $\sigma(Z)$-measurable? Is X, $\sigma(Y)$-measurable?