Title: Iterative Learning and Denoising in Convolutional Neural Associative Memories.

Authors: Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi


The task of a neural associative memory is to retrieve a set of previously memorized patterns from their noisy versions by using a network of neurons. Hence, an ideal network should be able to 1) gradually learn a set of patterns, 2) retrieve the correct pattern from noisy queries and 3) maximize the number of memorized patterns while maintaining the reliability in responding to queries. We show that by considering the inherent redundancy in the memorized patterns, one can obtain all the mentioned properties at once. This is in sharp contrast with the previous work that could only improve one or two aspects at the expense of the third. More specifically, we devise an iterative algorithm that learns the redundancy among the patterns. The resulting network has a retrieval capacity that is exponential in the size of the network. Lastly, by considering the local structures of the network, the asymptotic error correction performance can be made linear in the size of the network.

Full Text: [PDF]

Accessibility at Yale   Inference, Information, and Decision Group at Yale